National Repository of Grey Literature 49 records found  beginprevious31 - 40next  jump to record: Search took 0.01 seconds. 
POD-DEIM-based model order reduction for four-way coupled fluid-solid flows
Isoz, Martin ; Šourek, M.
Proper orthogonal decomposition (POD) and discrete empirical interpolation method (DEIM) have become established tools for model order reduction in simulations of fluid flows. However, including moving solid bodies in the computational domain poses additional issues with respect to the fluid-solid coupling and to the solution of the movement of the solids. Still, it seems that if the hybrid ctitious domain-immersed boundary method is used to include the solids in the flow domain, POD-DEIM based approaches may be extended for four-way coupled particleladen flows. The present work focuses on the construction of POD-DEIM based reduced order models for the aforementioned flows.
Geometrically realistic macro-scale model for multi-scalesimulations of catalytic filters for automotive gasaftertreatment
Hlavatý, Tomáš ; Isoz, Martin ; Plachá, M. ; Šourek, M. ; Kočí, P.
This paper is part of a research focused on simulating (i) the catalytic conversion of environment endangering gases, and (ii) trapping of the particulate matter in automotive exhaust gas aftertreatment. Historically, the catalytic conversion and the filtration of soot particles were performed in independent devices. However, recent trend is to combine the catalytic converter and soot filter into a single device, the catalytic filter. Compared to the standard two-device system, the catalytic filter is more compact and has lower heat losses. Nevertheless, it is highly sensitive to the catalyst distribution. This study extends our recently developed methodology for pore-scale simulations of flow, diffusion and reaction in the coated catalytic filters. The extension consists of enabling data transfer from macro- to pore-scale models by preparing geometrically realistic macro-scale CFD simulations. The simulation geometry is based on XRT scans of real-life catalytic filters. The flow data from the newly developed macro-scale model are mapped as boundary conditions into the pore-scale simulations and used to improve the estimates of the catalytic filter filtration efficiency.
Cavitation Induced by Rotation of Liquid
Kozák, Jiří ; Sedlář, Milan (referee) ; Kozubková, Milada (referee) ; Rudolf, Pavel (advisor)
Tato disertační práce se zabývá experimentálním a numerickým výzkumem kavitace vyvolané rotací. Pro potřeby tohoto výzkumu byla využita transparentní osově symetrická Venturiho dýza, díky čemuž bylo možné zkoumat dynamiku kavitujícího proudění pomocí analýzy vysokorychlostních nahrávek.
Preliminary aerodynamic analysis of remotely controlled model with jet propulsion
Novák, Ondřej ; Zikmund, Pavel (referee) ; Popela, Robert (advisor)
This bachelor´s thesis deals with aerodynamic analysis of unmanned aircraft and subsequent changes to design of wing, its position and wing-fuselage junction. In this work emphasis is laid on flow separation, its interaction with other flow structures and its influence on aerodynamic properties. The goal of these changes to the aircraft is ensuring sufficient stability and controllability in low as well as high angle of attack flight. AVL, XFLR5 and CFD methods were used in the thesis. In case of inaccuracy of CFD calculation, two backup wing related modifications were prepared.
Sports car rear wing numerical optimization
Feldová, Petra ; Rudolf, Pavel (referee) ; Štefan, David (advisor)
This master’s thesis is focused on optimization of rear wing of sport car by using open-source software. The optimization of 2D profile of the rear wing is present in this thesis. Python environment was chosen for optimization and evolutionary algorithm was is used as optimization function. This algorithm is further connected to Xfoil software, which is computing aerodynamic characteristic. The ratio of the lift and drag coefficients (C_L/C_D) is chosen as parameter which considers the aerodynamic efficiency. The CFD computation of flowing around the whole car is provided in open-source software OpenFOAM. . The profile optimization results to approximately 7.9 % raise of the parameter C_L/C_D, in the same wing stability. The main benefit of this work is to use open-source software for the optimization and CFD analysis, which in future might save company’s resources by not buying expensive commercial software licenses.
Model order reduction technique for large scale flow computations
Isoz, Martin
Current progress in numerical methods and available computational power combined with industrial needs promote the development of more and more complex models. However, such models are, due to their complexity, expensive from the point of view of the data storage and the time necessary for their evaluation. The model order reduction (MOR) seeks to reduce the computational complexity of large scale models. We present an application of MOR to the problems originating in the finite volume (FV) discretization of incompressible Navier-Stokes equations. Our approach to MOR is based on the proper orthogonal decomposition (POD)\nwith Galerkin projection. Moreover, the problems arising from the nonlinearities present in the original model are adressed within the framework of the discrete empirical interpolation method (DEIM). We provide a link between the POD-DEIM based MOR and OpenFOAM, which is an open-source CFD toolbox capable of solving even industrial scale problems. The availability of a link between OpenFOAM and POD-DEIM based MOR enables a direct order reduction for large scale systems originating in the industrial practice.
Numerical simulation of flow in superpak family packings
Smutek, J. ; Isoz, Martin
The distillation is currently the most energy-intensive technology of the chemical industry. Commonly, the distillation is performed in the columns lled with a structured packing. Structured packings are complex structures used to increase the size of the interface available for the mass transfer. Because of the high complexity of both the packings and the physical phenomena occurring during the distillation, the design of the distillation columns is still based mostly on empirical data. In this work, we concentrate on modeling the gas ow in the SuperPak family of structured packings. First, we propose an algorithm for automatic generation\nof the packing geometry. Next, we construct and validate a three-dimensional computational uid dynamics (CFD) model of gas ow through SuperPak 250.Y and SuperPak 350.Y packings. The model validation is done by comparing experimental data of dry pressure losses to the values computed by our model. The obtained di erence between the CFD estimates and experiments is bellow 10 %. Finally, we present a parametric study of the SuperPak 250.Y packing geometry. The devised modeling approach may be easily automated and used for optimization of the SuperPak type packing geometry with respect to the gas ow. Furthermore,\nthe proposed CFD model may be extended to account for the multiphase ow.
DEM-CFD study of flow in a random packed bed
Šourek, M. ; Isoz, Martin
Most catalytic surface reactions as well as other industrial applications take advantage of fixed packed bed reactors. Designers of these reactors rely mostly on empirical formulas derived for various simplifying assumptions, e.g. uniformly distributed porosity. The made simplifications and especially the assumption of uniformly distributed porosity fail if the tube to particle diameter ratio goes under 10 and the „wall effect“ becomes more significant. In such a case, the complete three-dimensional structure of the packed bed has to be considered. Thanks to ongoing improvements in numerical mathematics and computational power, the methods of computational fluid dynamics (CFD) have become a great tool for comprehensive description of the packed beds with low tube to particle diameter ratio. Three-dimensional simulations of the flow through two fixed beds differing in the type of the used particle are presented and compared with available experimental and empirical results. To generate the random fixed beds, we propose a custom approach based on the discrete element method (DEM) code implemented in open-source software Blender. Thereafter, OpenFOAM tools (snappyHexMesh, simpleFoam) are used for creation of the computational mesh and solution of the governing equations describing a single-phase flow in the packed bed.
OCTAVE a OpenFOAM a jejich využití ve fyzice
VISKUP, Marian
The main goal of this bachelor thesis is to create a several examples of GNU Octave and OpenFOAM. To get acquainted myself with their usage and write short manuals for instalation and work with them for school subject Software for Scientific Computing, which is realized at the Faculty of Science, University of South Bohemia.
CFD study of gas flow through structured separation columns packings mellapak 250.x and mellapak 250.y
Isoz, Martin
In order to increase the size of the gas-liquid interface area and consequently the intensity of the mass transfer, the separation columns are usually lled with a geometrically complex packing. The packing highly increases intricacy of the ow in the column and also makes almost all types of hydrodynamic measurements impossible. Hence a reliable model of the ow in the complex geometry of the separation column packing is sought by the industry. We provide a CFD model for the gas ow through two types of commercial structured packings, Mellapak 250.X and Mellapak 250.Y. We validate the model on experimental data and use it to study the gas mixing capabilities of the packings.

National Repository of Grey Literature : 49 records found   beginprevious31 - 40next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.