National Repository of Grey Literature 39 records found  beginprevious30 - 39  jump to record: Search took 0.01 seconds. 
Isolation of plant organelles and study of transport mechanisms
Kettnerová, Dana ; Martin, Jan (advisor) ; Tůmová, Lenka (referee)
Charles University in Prague, Faculty of Pharmacy in Hradec Králové Department of Pharmacognosy Diploma thesis Author: Dana Kettnerová Supervisor: PharmDr. Jan Martin, Ph.D. Title of diploma thesis: Isolation of plant organelles and study of transport mechanisms Key words: isolation, chloroplast, protoplast, vacuole, cell wall Isolation of plant organelles and other cellular components is essential for the study of physiological and pathological processes within the plant cell. It is possible to analyze cell structures, detect accumulation of certain metabolites, ions, enzymes and other substances thanks to the isolation. The goal of this diploma thesis was to provide an overview of isolation methods used for the isolation of cell wall, protoplasts, chloroplasts and vacuoles of plant cells. Isolation processes used for individual types of cell structures, the pros and cons of the various isolation methods, components of used media and their functions, as well as the structure and function of individual plant structures were described.
Visualization of cell structures in leaf cells of Malus domestica as a tool for study of Malus-Venturia inaequalis interactions
Zajícová, Iveta ; Schwarzerová, Kateřina (advisor) ; Mašková, Petra (referee)
Apple scab, the most serious disease of apple is caused by fungal pathogen Venturia inaequalis. Knowledge about the apple response to apple scab attack on the cellular and tissue level is insufficient. For studies of Malus-Venturia interaction on the cellular and tissue level, the establishment of methods for cell structures visualization in apple leaves is necessary. In this work, the experimental plant material grown in vitro and ex vitro was successfully established and the method of apple infection by conidia of V. inaequalis was optimized. Various methods of cell components visualization such as vital staining, in situ immunolocalization, transformation, environmental scanning electron microscopy and confocal microscopy, were tested. Cell structures, such as the cytoskeleton, the cell wall and the cuticle were visualized in apple leaves. Preliminary experiments following specific the changes of cell wall structures induced by V. inaequalis attack were performed. Further, changes of cuticle structure, the first barrier for penetration of pathogen to plant tissues during infection, were observed during the leaf ontogenesis. Powered by TCPDF (www.tcpdf.org)
Specificity of selected exocyst subunits in trichome development
Glanc, Matouš ; Žárský, Viktor (advisor) ; Binarová, Pavla (referee)
Trichomes are fine epidermal outgrowths covering aerial organs of most land plants. Although unicellular trichomes of Arabidopsis thaliana have long been used as a model system in plant cell and developmental biology, surprisingly little is known about the processes involved in cell wall biogenesis during the last stage of trichome maturation. A role of EXO70H4, a putative subunit of the vesicle tethering complex exocyst, in trichome maturation has recently been identified in our laboratory. Image analysis, histochemical detection and FT-IR spectroscopy methods were used in this study to analyze cell wall defects of the exo70H4 LOF mutant, revealing the mutation causes altered deposition of pectins and possibly also lignins and hemicelluloses. Transgenic lines with EXO70 paralogues driven by the EXO70H4 promoter were prepared and their analysis revealed that the closest paralogue EXO70H3, unlike EXO70A1 and EXO70B1, can complement the exo70H4 mutation. Based on the results, questions concerning trichome cell wall composition, the role of EXO70H4 in trichome maturation and functions of the plant exocyst complex are discussed. Keywords: Arabidopsis, trichome, cell wall, secretory pathway, exocyst complex, EXO70H4, FT-IR spectroscopy
Candida parapsilosis secreted aspartic proteinases: processing and secretion
Vinterová, Zuzana ; Heidingsfeld, Olga (advisor) ; Hodek, Petr (referee) ; Szotáková, Barbora (referee)
Candida parapsilosis is an emerging human opportunistic pathogen causing a wide spectrum of potentially life-threatening infections in immunocompromised hosts. One of the most important virulence factors of Candida spp. is a production of secreted aspartic proteinases (Saps). Presented thesis is mainly focused on the study of secreted aspartic proteinase 1 (Sapp1p) of C. parapsilosis, its processing and secretion under variable conditions and by use of various experimental models. Sapp1p is secreted by C. parapsilosis cells into the extracellular space as a completely processed and fully active enzyme. Experiments studying the C. parapsilosis cell wall (CW) confirmed the prolonged presence of completely processed Sapp1p on the cell surface (CW- Sapp1p). Proteolytic activity assay performed with the intact cells showed that CW-Sapp1p is proteolytically active prior to its release into the extracellular space and is capable of substrate cleavage. Biotinylation experiments with consecutive MS analysis revealed that CW-Sapp1p biotinylation is incomplete but saturable process, leaving partially unlabelled molecules. The accessibility of individual lysine residues in the Sapp1p molecule varied, with exception of four residues that were labelled in all of our experiments performed. The final step of...
Conventional and Novel Functions of the Exocyst Complex in Plants
Kulich, Ivan ; Žárský, Viktor (advisor) ; Baluška, František (referee) ; Hašek, Jiří (referee)
Exocyst is an octameric protein complex, conserved across all Eukaryotes. Its role, originally described in yeast, resides in a tethering of the secretory vesicles to the plasma membrane prior to the membrane fusion of the two membranes. Subunits SEC3 and EXO70 are believed to be spatial landmarks for the vesicles delivery. While yeast genome encodes single EXO70, we find dozens of them in land plants (23 in Arabidopsis). This work is focused at a role of the exocyst complex in plant cells. Its first part documents, that exocyst is essential for delivery of the cell wall components, namely pectins, but also for pathogen induced secondary cell wall thickening. Second part reveals an unconventional role of EXO70B1 subunit harboring exocyst subcomplex at an autophagic pathway to the vacuole and raises many questions about plant secretory pathway.
Subunits of exocyst complex in the development of Arabidopsis epidermis
Vojtíková, Zdeňka ; Žárský, Viktor (advisor) ; Soukup, Aleš (referee)
Exocyst is protein complex evolutionary conserved in yeasts, animals and plants, which plays a role in control of cell morphogenesis and polarity. It is a tethering complex whose function is to attach secretory vesicles to specifi c foci on plasma membrane. Complex exocyst is formed by eight subunits. Subunit EXO70 is encoded by 23 paralogue genes in genome of Arabidopsis thaliana. Mutation in paralogue subunit EX070H4 causes defect in trichome maturation. Mutant trichomes have thin, not reinforced cell wall, making them soft and elastic. Transcription of EXO70H4 gene is induced by UV radiation, therefore observations of plants cultivated on UV-B radiation were done. Analysis of mutants cultivated on UV-B radiation revealed hyperaccumulation of vesicules in cytoplasm, which were visible by light microscope. Hyperaccumulation was not observed in control plants cultivated on UV-B radiation, but thickening of cell wall was induced. Th is reaction to UV in trichomes hasn't been described yet. Analysis of cellular localization made with YFP tagged constructs revealed that EXO70H4 localizes into mobile corpuscules associating with Golgi apparatus. It was found with yeast two hybrid system that EXO70H4 interacts with TRS120, subunit of tethering complex TRAPPII which is active in Golgi apparatus....
Role of cytoskeleton in plant cell morphogenesis
Miklánková, Pavlína ; Schwarzerová, Kateřina (advisor) ; Sekereš, Juraj (referee)
The cells are able to acquire variety of shapes, in which cytoskeleton plays an important role. Cytoskeleton influences deposition of cell wall materials, regulates vesicle movement in cell, participates in exocytosis and endocytosis. Cortical microtubules affect celulose accumulation in cell wall and determine direction of cell expansion, although the exact connection between microtubules and cellulose remains unclear. Actin promotes growth and contributes to its spatial regulation in both tip ang diffuse growing cells. Actin is important for secretion in expanding cells but its exact functions in cell growth regulation are not explained yet. Analysis of mutants, spectroscopic methods, cytoskeletal drugs, fluorescence proteins and other methods are used to better understand how actin and microtubule cytoskeleton are integrated during plant cell morphogenesis. Epidermal and trichome cells of Arabidopsis thaliana are a good model of research and they are used for most studies.
Secretory pathway in plant cell wall polysaccharide biosynthesis and FT-IR spectroscopy methods in plant cell wall composition analysis
Glanc, Matouš ; Žárský, Viktor (advisor) ; Votrubová, Olga (referee)
All plant cells are encapsulated in a cell wall that determines the cells' shape and size and is essential to many of their vital processes. The cell wall of streptophyte plants is composed mainly of polysaccharides of high molecular weight. Cellulose, the main constituent of the plant cell wall, is synthesized by protein complexes bound to the PM, while hemicelluloses and pectins are synthesized in the Golgi apparatus. Several proteins that participate in the synthesis of cell wall polysaccharides have been identified, but hundreds of them remain to be discovered. Secretory pathway plays an important role in plant cell wall biogenesis as it transports cellulose synthase complexes and noncellulosic polysaccharide molecules to the cell surface. Some regulatory mechanisms that might be involved in cell wall material secretion, such as actin cytoskeleton, Ca2+ gradient or PIP kinases have been proposed; however, the regulation of this process is very complex and far from being understood. FT-IR spectroscopy is a method that can detect molecular vibrations and provide information about chemical composition of virtually all substances. It has been used successfully in screens for cell wall mutants, the study of interactions between cell wall polymers, as well as other areas of cell wall biology. FT-IR...
Fluorescence spectroscopy of calcofluor stained yeast cell suspensions.
Dostál, Marek ; Plášek, Jaromír (advisor) ; Heřman, Petr (referee)
Title: Fluorescence spectroscopy of calcofluor stained yeast cell suspensions Author: Marek Dostál Department: Fyzikální ústav UK Supervisor: prof. RNDr. Jaromír Plášek CSc. Abstract: We were finding and we found fast and easy fluorescence spectroscopy method which we can use for cell wall research of different yeast types that were cultivated on various medium. Gauging was under way in solution of different ionic forces. The growth medium has the greatest effect on quality of cell wall. We use calcofluor as fluorescent colour. After exposing calcofluor by UV (λex ≈ 365 nm) calcofluor emites blue fluorescence with maximum intensity around 420 nm in dependence on suspension concentration. We must be careful about inner filter that can influence our result during research. We validated diversity of cell wall structures in various yeast types by ratio spectral method (spectral fingerprint). Keywords: Fluorescence, spectroscopy, cell wall, calcofluor, inner filter.
Mechanisms of epidermal cells polarization in plants.
Vojtíková, Zdeňka ; Žárský, Viktor (advisor) ; Soukup, Aleš (referee)
Plant epidermal cells form contact area of the plant, they protect it from impacts of surrounding environment and they mediate the communication with its neighbourhood. In the epidermis there are evenly distributed several cell types with quite specialized morphology (pavement cells, trichomes and guard cells) due to the polarization mechanisms. The cytoskeleton and signal molecules of ROP GTPase family promote the polarized growth. Thanks to polarized growth the cells reach their shapes. The cytoskeleton responds to the signal by expanding the cell, helps with targeting of the secretion to the sites of active growth and mediates polarized formation of the cell wall. On the upper side of the epidermis the cuticle and layer of epicuticular waxex is secreted. The secretion of cuticular components is baso-apicaly polarized. This work summarizes the mechanisms of the polarization in plant epidermal cells discoverd untill now.

National Repository of Grey Literature : 39 records found   beginprevious30 - 39  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.