National Repository of Grey Literature 46 records found  beginprevious27 - 36next  jump to record: Search took 0.00 seconds. 
Precipitation processes in light hardenable alloys and the possibilities for integrating thermal analysis into physics education on high school
Kodetová, Veronika ; Vlach, Martin (advisor) ; Černošková, Eva (referee) ; Svoboda, Pavel (referee)
The doctoral thesis is divided into two parts - Thermal analysis in physics education on high school and Material research of Al-Zn-Mg(-Cu-Sc-Zr) alloys. Within the first part, the areas of crystallization and/or melting of selected foods were determined using differential scanning calorimetry. A practical lesson for high school physics has been created and tested. The study text focused mainly on differential scanning calorimetry and its use was made. In the second part of the doctoral thesis, there was analysed thermal evolution of the phase transformation in the Al- Zn-Mg(-Cu) alloys with Sc and Zr addition. The effect of (cold and hot) deformation on the decomposition sequences was studied. The hardening effect after annealing above 300 řC in the Sc and Zr alloys is caused by the precipitation of the secondary Al3Sc,Zr) particles. These particles were observed by transmission electron microscopy after annealing up to 360 řC in all studied AlZnMg(Cu)ScZr alloys. In the AlZnMgCu alloy the partial recrystallization was observed after annealing at 350 řC/10 hours and after annealing at 450 řC/10 hours the grain size was 50-200 m (depending on the treatment of the alloy). The addition of Sc, Zr in the AlZnMgCuScZr stabilizes grains and there is no recrystallization in the AlZnMgCuScZr alloy at temperature...
Influence of selected agents on crystallization power of polylactide
Kurakin, Yuriy ; Přikryl, Radek (referee) ; Bálková, Radka (advisor)
The influence of seven additives on the crystallization ability of polylactide (PLA), melt flow index (MVR) and mechanical tensile properties was studied. Pressed plates with a thickness of 0.8 mm were tested. Selected additives added in amounts of 0.5 and 1.0% were as follows: talc, sodium benzoate, mixtures of organic salts with amorphous SiO2 and zinc stearate, metal salt, phosphate salt, and potassium salt of 5-dimethylsulfoisophthalate (LAK-301 - nucleating agent developed for PLA). Non-isothermal crystallization measurements were performed at different cooling rates (0.3; 0.5; 0.7; 1.0 and 1.5 ° C). All nucleation agents increased the MVR of PLA except talc; the largest increase (9-fold and 24-fold) was the addition of metal salt. The additives did not fundamentally change the mechanical properties. All samples were rather brittle (the most brittle with LAK-301), the modulus of elasticity was around 1.2 GPa for all samples, the strength of PLA was increased the most by the addition of 1% talc (by 12%) and the elongation at break was increased by organic salt with SiO2. All samples with nucleating agents content of 1% were amorphous (crystalline content did not exceed 2%). Thus, the addition of reagents did not support the crystallization process during rapid cooling, even in the case of LAK-301. However, LAK-301 was acting as an excellent nucleating agent at slow cooling rates (1.5 °C / min and below). The nucleation activity of the additives decreased in the following order: LAK-301, organic salt with zinc stearate, talc, organic salt modified with amorphous SiO2 and phosphate salt. Samples with sodium benzoate and metal salt were crystallizing on cooling in several steps and it was not possible to use the method of Dobrev and Gutzow to evaluate the nucleation activity.
Influence of different forms of titanium dioxide nanoparticles on soil organic matter properties
Miklasová, Marta ; Řezáčová, Veronika (referee) ; Kučerík, Jiří (advisor)
Nanoparticles present potential risk for environmental compartments including soil. Previous works have been focused on negative effects of nanoparticles on soil biota, however studies about the influence of nanoparticles on soil properties are still limited. This thesis investigates an impact of 20 nm titanium dioxide nanoparticles on selected water properties in soil organic matter exposed to air with various relative humidity. Indeed, at 43, 70 and 95 % dominate different water types, i.e. water adsorbed on soil organic matter, water in water molecular bridges and phase water, respectively. Differential scanning calorimetry (DSC) was used in the study. An important finding is that nanoparticles reduce the stability of water molecular bridges under 70% relative air humidity and generally reduce evaporation enthalpy of water, which represents the ability of the soil to retain water. In the next part the influence of nanoparticles on total water in soil was observed. Under low relative humidity, rutile and anatase affected soil in different ways due to their various hydrophilicity. Under higher relative humidity this effect disappeared. In the last part, ice melting and water evaporation enthalpies of nanoparticle solutions were measured to confirm the presumed effect of nanoparticles on water. The ice melting enthalpy of the solutions was higher relatively to pure water, while the evaporation enthalpy showed a reverse trend (decrease). This confirmed the effects of nanoparticles both for pure water and soil water.
The study of behavior of platinum nanoparticles in environmental compartments
Berka, Michal ; Řezáčová, Veronika (referee) ; Komendová, Renata (advisor)
Platinum nanoparticles pose a risk to environmental compartments. The aim of this diploma thesis is to conduct research on the influence of platinum nanoparticles in a wide range of concentrations on soil properties at different humidities. Specifically, it is about influencing the stability of water molecular bridges, the content of aliphatic crystallites, the retention capacity of water in the soil and the strength of water binding. Furthermore, the amount of nanoparticles sorbed on the soil was also measured. These indicators give us more information about the influence of platinum nanoparticles on evapotranspiration and soil deterioration. Methods of thermal analysis (differential scanning calorimetry) and optical methods (atomic absorption spectrometry) were used for these researches. The theoretical part of the work is devoted to a comprehensive introduction to platinum and its nanoparticles, as well as aqueous molecular bridges. It has been found that 200 nm platinum nanoparticles affect the strength of aqueous molecular bridges, have no effect on aliphatic crystallite content, have minimal effect on soil water retention, and that the water bond strength decreases due to platinum nanoparticles at high relative humidity. With 200 nm platinum nanoparticles, complete adsorption to soil occurs over the entire concentration range. With 3 nm nanoparticles, the soil is supersaturated at higher concentrations and larger amounts are not adsorbed. The results show that the larger the size of the platinum nanoparticles, the lower the negative effect on evapotranspiration and soil function itself.
Mechanical properties and structure of blends of recycled polyethylene with linear low density polyethylene
Kocandová, Jana ; Poláček, Petr (referee) ; Bálková, Radka (advisor)
Recycled material produced during three months from packing polyethylene foils coming from three suppliers was analysed together with one recycled material under complaint from the point of melt flow index (MFI), composition and mechanical properties. The addition of linear low density polyethylene (LLDPE) into the recycled material was studied as well. It was measured melt flow index (MFI), Differential scanning calorimetry (DSC) together with Thermogravimetry methods were used to determine composition. Selected materials were pressed to obtain films with the thickness of 1 mm to determine tensile properties. Recycled materials contained 40–65% LLDPE, small amount of polypropylene as well as chalk. The content of LDPE and LLDPE varied within one supplier and thus mechanical properties did. The results showed the difference in quality of PE films separation among all suppliers. The problems with workability of material under complaint were caused by the material composition – the amount of LLDPE predominated. The addition of LLDPE into the recycled material in the range of 5–20 % increased MFI by 13-78%. Mechanical properties of blends rich in LLDPE were similar to those of clear LLDPE. The presence of LDPE influenced more markedly only the strength to break. The blends of LDPE and LLDPE were evaluated as immiscible but with high affinity of the components with increasing contend of LLDPE. No material was chemically degraded. The methods commonly performed in manufacture, especially MFI, are not able to differentiate LDPE form LLDPE – recommended is DSC.
Hydration of biochar prepared by using microwave pyrolysis of municipal sludge
Miklasová, Marta ; Komendová, Renata (referee) ; Kučerík, Jiří (advisor)
Microwave pyrolysis represents a possible solution of municipal sludge disposal. One of the final products of pyrolysis is amorphous porous carbon material called biochar, which can be used in agriculture as a soil amendment. As a rule, biochar is hydrophobic, but its addition can lead to an increase in water holding capacity. However, reasons of this improvement cannot be explained only by its high porosity. This thesis aims to contribute to the understanding the interactions between biochar and water under various environmental-relevant conditions such as direct water addition method and water adsorption from ambient air at different relative humidity. The thermo-analytical methods are common for investigation of the relationship between water and organic materials. One of these methods, differential scanning calorimetry, was used in this thesis. The first experiment was focused on measuring of melting enthalpy of freezable water in biochar pores. The results reflect the influence of pore size and properties of ice structure. The extrapolation of concentration dependence to zero enthalpy was used to determine non-freezing water (0,13–0,15 mg·mg-1 biochar), which reflects microporosity of the biochar. The second experiment was focused on the determination of evaporation enthalpy of water from biochar, which is a measure of the strength of water binding in biochar. This value indirectly reflects the mechanisms of the intake and release of water by biochar. Comparing the results for bound and pure water showed that in biochar is water bound weaker about 10–20 %. This led to conclusion that biochar binds water relatively weakly and the water exchange between biochar and soil is fast, despite the biochar hydrophobicity.
Water-cation bridges in soil organic matter
Starostová, Anna ; Komendová, Renata (referee) ; Kučerík, Jiří (advisor)
Degradace půdy zasolováním, zvyšující se teplota a následný úbytek mnonžství srážek v posledních letech vedou k rozšiřování aridních a semi-aridních oblastí (v současnosti pokrývají třetinu pevniny Země). Navíc představují globální environmentální problémy, které, pokud se nebudou správně řešit, můžou vést k vážné celosvětové krizi. V této diplomové práci jsme propojili tato témata a zaměřili se na lepší porozumění role sodných kationtů na vazbu vody v půdní organické hmotě v aridních a semi-aridních podmínkách. Náš cíl byl prozkoumat proces vzniku a stabilitu vodních molekulových můstků a vodních-kationických můstků v půdní organické hmotě, sílu vazby a množství vázáné vody v půdě za využití diferenční kompenzační kalorimetrie. Nasycení sodnými kationty bylo studováno ve dvou koncentračních oblastech. Na simulaci přirozených podmínek v půdách bylo použito nasycení vazebných míst sodnými kationty do 100% a nasycení nad 100% reprezentovalo vysoce zasolené půdy. Výsledky potvrdily význam schopnosti půdy získávat vodu ze vzdušné vlhkosti, podíl vody v půdě vzrůstal s relativní vlhkostí. Vyšší podíl vody v půdě pak způsoboval snížení síly vazebných interakcí, což bylo interpretováno jako fakt, že rovnováha mezi půdní a vzdušnou vlhkostí vede k optimální vlhkost půdy. Přítomnost sodných kationtů ve vzorcích do nasycení 100% měla na množství vody zanedbatelný vliv, ale v přesycených vzorcích umožňovala navázání většího množství vody. V přesycených vzorcích bylo také pozorováno zvýšení síly vazebných interakcí mezi půdou a vodou, což vede k její větší zádrži. Molekulové můstky byli stabilnější ve vzorcích, které obsahovaly Na+. Nejvyšší stabilita byla pozorována u 10% nasycených vzorcích, další zvyšování Na-saturace pak již vedlo k snižování stability molekulových můstků. Hlavním výstupem práce je, že tvorba vodních-kationických můstků stabilizuje půdní strukturu a že má vlyv na sílu a množství vody vázané v půdě, což představuje klíčové aspekty kvality půdy. Je potřebný rozsáhlejší výskum tohoto tématu, aby získané výsledky pomohli optimalizovat půdní manažment v aridních oblastech a také v ostatních oblastech, kde dochází k degradaci půdy.
AN INTERPLAY BETWEEN HEAT TREATMENT CONDITIONS AND B2 <-> B19 ' TRANSFORMATION IN Ni-Ti SHAPE MEMORY ALLOYS
Kuběnová, Monika ; Zálešák, Jakub ; Čermák, Jiří ; Dlouhý, Antonín
This study investigates the influence of a heat treatment atmosphere on multistage martensitic transformations in a Ti-50.9at% Ni shape memory alloy. Evacuated quartz tubes were filled with hydrogen while the hydrogen partial pressure was carefully controlled in each experiment. The encapsulated specimens were subjected to heat treatments consisting of annealing and aging. After the heat treatment, the path of martensitic transformation was investigated using differential scanning calorimetry (DSC). On cooling, martensite initial temperatures decrease with the increasing partial pressure of hydrogen applied during the heat treatment. Moreover, the formation of martensite phase may not take place for partial pressures that exceed a certain limit. On the other hand, two-and multiple-step B2/R/B19' martensitic transformations are observed in specimens heat treated at lower hydrogen pressures. Results obtained using transmission electron microscopy (TEM) clearly show that the size of Ni4Ti3 precipitates becomes smaller in alloys that were heat treated at higher hydrogen pressures. The results are discussed in terms of a chain of events. It is suggested that diffusion of hydrogen into the specimen during the annealing step first influences the nucleation of the Ni4Ti3 phase. The sizes and distribution of the Ni4Ti3 precipitates than control the characteristics of B2/B19' transformation.
Optimisation of Isolation Procedure and Characterization of Amorphous PHB granules
Kratochvíl, Zdeněk ; Obruča, Stanislav (referee) ; Kalina, Michal (advisor)
First artificial PHB granules were prepared under the terms of this thesis. The effect of used PHB solvent, ultrasonic bath temperature and time, solvent evaporation temperature and stabilizing agent nature was investigated using dynamic and electrophoretic light scattering. The most proper parameters were demonstrated at samples which were prepared by dissolving of PHB in chloroform, stabilizing with CTAB or lecithin, ultrasonifying at 35 °C followed by chloroform evaporating at 60 °C. Based on ATR-FTIR and Raman spectroscopy results, it was found out that PHB within the artificial granules were in crystalline form. The native PHB granules were isolated from Cupriavidus necator using either lysosyme, deoxyribonuclease and cell disruption by ultrasonification or digestion with alcalase, SDS and EDTA. Granules obtained by both isolation procedures were characterized by ATR-FTIR, Raman spectroscopy, light scattering techniques and DSC. According to the analyses results, the second mentioned procedure turned out to be more effective for obtaining the polymer in amorphous state. Furthermore, the polymer within granules recovered by using this procedure was thermally more stable. Last but not least, the native PHB granules samples were exposed to effect of acetone, lipase and sodium hypochlorite, assuming that polymer crystallinity should be increased by these chemicals in varying degrees. The highest degree of crystallinity was achieved after their treatment with lipase.
Structural and morphological characterization of polyamide buckles
Kubíčková, Eva ; Poláček, Petr (referee) ; Bálková, Radka (advisor)
The work deals with structrural and morphological characterization of polyamide buckles used to fasten webbins. The buckles were produced in five different years, a few of those produced in 2000 and 2004 were broken. The aime is to determine the type of polyamide and the cause of fracture of the buckles during using. The buckles were characterized in terms of structure and composition by Fourier-transform infrared spectroscopy in a mode of attenuated total reflaction, differential scanning calorimetry, thermogravimetry and X-ray diffraction. The buckles were made of polyamide 12. The broken buckles showed higher melting point, lower thermal stability and, in addition to modification it also contains modification, which is more fragile and probably represents the cause of fracture.

National Repository of Grey Literature : 46 records found   beginprevious27 - 36next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.