Národní úložiště šedé literatury Nalezeno 48 záznamů.  začátekpředchozí21 - 30dalšíkonec  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Hybrid fictitious domain-immersed boundary method in CFD-based topology optimization
Kubíčková, Lucie ; Isoz, Martin
Advances in technological development, especially in 3D printing, allow engineers to design components with almost arbitrary shape and connectivity. Consequently, more and more attention is being directed towards a highly-specialized application-driven component design based on topology optimization (TO). In the present work, we propose a methodology enabling TO of components in contact with flowing fluids. In particular, the optimization itself is based on multi-objective evolutionary algorithms (MOEAs) with the component geometry encoded using a binary representation. The optimization criteria are evaluated via computational fluid dynamics (CFD). The main novelty of the proposed TO framework lies in its robustness and effectiveness achieved by utilizing a single computational mesh for all the tested designs and projecting the specific components shapes onto it by the means of an immersed boundary method. The new methodology capabilities are illustrated on a shape optimization of a diffuser equipped as a part of an ejector. The optimization goal was to increase the ejector energy efficiency. The newly proposed methodology was able to identify a design by roughly 9 % more efficient than an alternative one found utilizing a previously published and less general optimization approach.
Shifted proper orthogonal decomposition and artificial neural networks for time-continuous reduced order models of transport-dominated systems
Kovárnová, A. ; Krah, P. ; Reiss, J. ; Isoz, Martin
Transport-dominated systems are pervasive in both industrial and scientific applications. However, they provide a challenge for common mode-based model order reduction (MOR) approaches, as they often require a large number of linear modes to obtain a sufficiently accurate reduced order model (ROM). In this work, we utilize the shifted proper orthogonal decomposition (sPOD), a methodology tailored for MOR of transport-dominated systems, and combine it with an interpolation based on artificial neural networks (ANN) to obtain a time-continuous ROM usable in engineering practice. The resulting MOR framework is purely data-driven, i.e., it does not require any information on the full order model (FOM) structure, which extends its applicability. On the other hand, compared to the standard projection-based approaches to MOR, the dimensionality reduction utilizing sPOD and ANN is significantly more computationally expensive since it requires a solution of high-dimensional optimization problems.
Estimating rheological properties of suspensions formed of arbitrarily-shaped particles via CDF-Dem
Kotouč Šourek, M. ; Isoz, Martin
In recent years, new methods combining computational fluid dynamics (CFD) and discrete element method (DEM) have been intensively studied. Usually, these methods are focused on simulations of spherical particles. Nevertheless, this is inadequate for a simulation of a common suspension, the rheology of which is affected by particle shapes. In this work, we leverage the capabilities of an in-house developed CFD-DEM solver to simulate suspensions formed of arbitrarily-shaped particles. Specifically, we simulate a rheological measurement to estimate the suspension viscosity. The CFD-DEM estimates are in very good agreement with available experimental data and correlations proving the new solver capabilities regarding firstprinciples-based simulations of complex non-Newtonian suspension behaviour. The practical potential of suspension simulation is illustrated in a numerical study of the washcoating process in the preparation of a catalytic filter for automotive exhaust gas after-treatment.
A parallel algorithm for flux-based bounded scalar Re-distribution
Isoz, Martin ; Plachá, M.
Let us assume a bounded scalar function ? : Q = I × ? ? ?0, 1?, I ? R, ? ? R3, where Q is an open bounded domain and its discrete counterpart ?h defined on a computational mesh Qh = Ih × ?h. The problem of redistribution of ?h over ?h ensuring the scalar boundedness while maintaining the invariance of R ?h ?h dV is surprisingly frequent within the field of computational fluid dynamics (CFD). The present contribution is motivated by the case arising from coupling Lagrangian particle tracking and particle deposition within ? h with Eulerian CFD computation. We propose an algorithm for ?h redistribution that is (i) based on fluxes over the computational cells faces, i.e. suitable for finite volume (FV) computations, (ii) localized, meaning that a cell ?h P with ?hP > 1 affects only its closest neighbors with ?h < 1, and (iii) designed for parallel computations leveraging the standard domain decomposition methods.
Developing a coupled CFD solver for mass, momentum and heat transport in catalytic filters
Hlavatý, Tomáš ; Isoz, Martin ; Kočí, P.
Using catalytic filters (CF) in automotive exhaust gas aftertreatment decreases the system heat losses and facilitates the CF regeneration. On the other hand, the CF overall performance is strongly dependent on the catalytic material distribution within it. In the present work, we aim to provide a computational framework to study the dependence of the CF characteristics, i.e. the pressure loss and the conversion of gaseous pollutants, on the catalyst distribution. Previously, we built an isothermal computational fluid dynamics (CFD) model of the flow and conversion of gaseous pollutants inside the CF. However, the reactions occurring inside the CF are exothermic and the assumption of constant temperature proved to be too restricting for real-life applications of the developed isothermal CFD model. Thus, in this work, we extend the framework by the enthalpy balance, which requires combining all the transport equations (mass, momentum and enthalpy) in a single solver. The new and more general solver provides results in good agreement with a well established (1+1)D channel model calibrated on experimental data. Furthermore, it allows studying more complex device-scale geometries of laboratory CF samples.
Recent improvements in CFD solver for fully coupled particle-laden flows
Šourek, M. ; Isoz, Martin
While new methods combining the computational fluid dynamics (CFD) and the discrete element method (DEM) have been developed to simulate freely moving solid particles, they tend to be focused on simulations with spherical particles only. Here, we present a strongly coupled CFD-DEM solver capable of simulating movement of arbitrarily-shaped particles dispersed in a fluid. The particles are assumed to be large enough to affect the fluid flow and distributed densely enough to come into contact with both the boundaries of the computational domain and with each other. In this paper, we will focus on the recent improvements of our solver, specifically, in the areas of (i) inclusion of solid bodies into the computational domain, (ii) general CFD-DEM coupling algorithm, and (iii) code parallelization and practical usability.
Increasing Ejector Efficiency via Diffuser Shape Optimization
Kubíčková, Lucie ; Isoz, Martin ; Haidl, Jan
An ejector is a technologically simple and yet wide-application fluid machine. While it has favorable characteristics for a signifficant number of technological processes, its main downside is probably its high operational energy demands. The present paper is an initial result of an ongoing research aimed at improving energy e ciency of the ejector via optimization of its geometry. In the paper, we focus mostly on presenting a general multi-objective optimization framework usable for an ejector shape optimization. The approach applicability is illustrated on a simpli ed problem comprising only a single phase flow in an ejector mixing tube and diffuser. Nevertheless, the achieved simulation and optimization results are validated against experimental data. The proposed optimization method itself is based on multi-objective evolutionary algorithms (MOEAs) combined with computational fluid dynamics (CFD) for evaluation of the vector-valued objective function.
Parametrický generátor výpočetní sítě trubkového svazku výměníku tepla pro OpenFOAM
Petrů, Martin ; Juřena, Tomáš (oponent) ; Turek, Vojtěch (vedoucí práce)
Tato diplomová práce pojednává o základech výpočetní dynamiky tekutin (CFD), důvodech jeho použití a související nutnosti vytvářet výpočetní sítě. Další část práce se zaměřuje na vyhodnocování kvality výpočetních sítí a stručně na výpočetní metody CFD. Jsou také srovnány dostupné síťové generátory a poskytnut přehled o možnostech tvorby sítí. Dále jsou uvedeny základní informace o softwaru OpenFOAM a jeho možnostech, zejména tvorby sítě pomocí aplikace blockMesh. Následující část práce je věnována popisu vyvinuté aplikace a jejím funkcím pro generování kvalitní výpočetní sítě trubkového svazku výměníku tepla pro software OpenFOAM. V závěru je simulací ustáleného proudění ověřena správnost vytvořené sítě a její dostatečná kvalita.
Development of CFD solver for four-way coupled particle-laden flows
Šourek, M. ; Isoz, Martin
Computational uid dynamics (CFD) simulations containing freely moving bodies are still a challenging topic. More so, if the bodies are large enough to a_ect the uid ow and distributed\ndensely enough to come in contact both with the boundaries of the computational domain and with each other. In this work, we concentrate on the topic of simulation of (i) irregular bodies\nwith ow-induced movement and contact with computational domain boundaries taken into account, and (ii) bodies entrained by the uid and coming in contact not only with the domain\nboundaries but also with each other. The developed modeling approach is based on the hybrid _ctitious domain-immersed boundary method extended by the discrete element method. The\npresent contribution is focused on presentation of simulation principles and results of initial benchmark cases.
POD-DEIM-based model order reduction for four-way coupled fluid-solid flows
Isoz, Martin ; Šourek, M.
Proper orthogonal decomposition (POD) and discrete empirical interpolation method (DEIM) have become established tools for model order reduction in simulations of fluid flows. However, including moving solid bodies in the computational domain poses additional issues with respect to the fluid-solid coupling and to the solution of the movement of the solids. Still, it seems that if the hybrid ctitious domain-immersed boundary method is used to include the solids in the flow domain, POD-DEIM based approaches may be extended for four-way coupled particleladen flows. The present work focuses on the construction of POD-DEIM based reduced order models for the aforementioned flows.

Národní úložiště šedé literatury : Nalezeno 48 záznamů.   začátekpředchozí21 - 30dalšíkonec  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.