National Repository of Grey Literature 44 records found  beginprevious15 - 24nextend  jump to record: Search took 0.01 seconds. 
Regulatory mechanisms of ornithin transcarbamylase and beta-glucocerebrosidase gene expression and their relevance to diagnostics
Lukšan, Ondřej ; Jirsa, Milan (advisor) ; Kožich, Viktor (referee) ; Kříž, Vítězslav (referee)
5 Abstract Definitive diagnosis of inherited metabolic disorders commonly depends on the measurement of enzyme activity (which is often complicated) and/or molecular genetic testing. Yet even the standard mutation analysis can bring false negative results in the case of gross chromosomal rearrangements or incorrect regulation of gene expression due to the mutations in regulatory regions. In the present study I focused on characterization of complex mutations affecting the gene encoding ornithin transcarbamylase (OTC) followed by studies of regulatory regions of OTC and GBA (the gene encoding β-glucocerebrosidase). In the first study we identified 14 novel mutations including three large deletions in a cohort of 37 patients with OTC deficiency (OTCD). Subsequently we evaluated clinical significance of all these mutations. We also found a heterozygote carrying a hypomorphic mutation and manifesting OTCD most likely due to unfavorable X-inactivation which was observed independently in three different peripheral tissues. In order to evaluate the clinical significance of a promoter variation c.-366A>G found in a family with mild OTCD we identified three alternative transcription start sites (TSSs) of human OTC and delimited the promoter. We also found a distal enhancer and performed functional analysis of both...
Factors interacting with bacterial RNA polymerase and their effect on the regulation of transcription initiation
Ramaniuk, Volha
(ENGLISH) The bacterial cell needs to regulate its gene expression in response to changing environmental conditions. RNA polymerase (RNAP) is the pivotal enzyme of this process and its activity is controlled by a number of auxiliary factors. Here I focus on RNAP-associating factors involved in regulation of transcription in G+ bacteria:  factors, initiating nucleoside triphosphates (iNTPs), HelD, δ and small RNA Ms1. The main emphasis is on σ factors from Bacillus subtilis. σ factors allow RNAP to specifically recognize promoter DNA. In my first project I set up in vitro transcription systems with purified alternative σ factors, σB , σD , σH , σI from B. subtilis. Using these systems, I studied the effect of initiating NTP concentration ([iNTP]) on transcription initiation. I showed that promoters of alternative  factors are often regulated by [iNTP]. In the next project I comprehensively characterized one of the least explored alternative  factors from B. subtilis, I . I identified ~130 genes affected by I , though only 16 of them were directly affected. Moreover, I discovered that I is involved in iron metabolism. Finally, I showed that I binding requires not only the conserved -35 and -10 hexamers, but also extended -35 and -10 elements located in the spacer region. In collaboration with...
Molecular genetic and biochemical studies of selected inherited metabolic disorders, development and applications of new methods
Mušálková, Dita ; Hřebíček, Martin (advisor) ; Adam, Tomáš (referee) ; Macek, Milan (referee)
Inherited metabolic disorders (IMD) form a diverse group of several hundred different diseases with a relatively high cumulative incidence (stated up to 1:600). They are associated with accumulation of the substrates and lack of the products in specific metabolic pathways, which is caused by deficiency of the enzyme or its activator, or dysfunction of the transport protein. However, the underlying cause is at the DNA level. The grounds for different phenotype manifestation in patients with the same genotype are often not known. During my work at the Institute of Inherited Metabolic Disorders, I designed several new methods for the research of IMD and applied them in the patients and their families. I created procedures for the isolation of lysosomal membranes that are used for the research of lysosomal storage disorders and general properties of lysosomes. Next, I introduced several novel assays for determination of the X-inactivation ratio, which led to a significant increase of informative women. Nowadays, we use these methods in heterozygous women with X-linked diseases in order to study the influence of X-inactivation on the manifestation of the diseases. The cases of a girl with mucopolysaccharidosis type II, a girl with OTC deficiency and a family with the mutation in HPRT1 gene are described...
The role of alternative sigma factors of RNA polymerase in regulation of gene expression in Corynebacterium glutamicum
Šilar, Radoslav
Abstract Regulation of transcription by extracytoplasmic-function (ECF) sigma factors of RNA polymerase is an efficient way of cell adaptation to diverse environmental stresses. Amino acid- producing gram-positive bacterium Corynebacterium glutamicum codes for seven sigma factors: the primary sigma factor SigA, the primary-like sigma factor SigB and five ECF stress- responsive sigma factors (SigC, SigD, SigE, SigH and SigM). The sigH gene encoding SigH sigma factor is located in a gene cluster together with the rshA gene, encoding the anti-sigma factor of SigH. Anti-sigma factors bind to their cognate sigma factors and inhibit their transcriptional activity. Under the stress conditions the binding is released allowing the sigma factors to bind to the RNAP core enzyme. In this thesis, regulation of expression of genes encoding the most important ECF sigma factor SigH and its anti-sigma factor RshA as well as genes belonging to the SigH-regulon were mainly studied. The transcriptional analysis of the sigH-rshA operon revealed four housekeeping promoters of the sigH gene and one SigH-dependent promoter of the rshA gene. For testing the role of the complex SigH-RshA in gene expression, the C. glutamicum ΔrshA strain was used for genome-wide transcription profiling with DNA Microarrays technique under...
Characterization of promoter regions of HGSNAT and GBA genes, and a contribution to the study of pathogenesis of MPS IIIC and Gaucher disease
Richtrová, Eva ; Hřebíček, Martin (advisor) ; Macek, Milan (referee) ; Adam, Tomáš (referee)
Pathogenesis of mucopolysaccharidosis type IIIC (MPS IIIC) and Gaucher disease has not been yet fully clarified, and the causes of phenotypical variability between the patients with the same genotype in Gaucher disease remain obscure. Because the variants in the regulatory regions of genes can cause phenotypical differences mentioned above, I have studied promoter regions of HGSNAT and GBA genes mutated in these lysosomal disorders. I have shown that there is an alternative promoter of GBA (P2). Additional studies were aimed to elucidate possible physiological functions of P2, and its possible role in the pathogenesis of Gaucher disease. I have found that P2 is not tissue specific, and that its variants do not influence the variability of phenotype in Gaucher patients with the same genotype. P2 is used differentially neither during the differentiation of monocytes to macrophages nor in macrophages from controls and Gaucher patients, in whom there is a prominent storage only in cells of macrophage origin. We have thus not found any changes that would suggest a role for P2 in the pathogenesis of Gaucher disease. I have characterized the promoter region of HGSNAT and shown that the binding of Sp1 transcription factor is important for its expression. Sequence variants found in HGSNAT promoter in...
Overlaps of sigma factors regulons of RNA polymerase in Corynebacterium glutamicum
Zíková, Jaroslava ; Pátek, Miroslav (advisor) ; Sudzinová, Petra (referee)
Sigma factor (σ) is a part of the RNA polymerase enzyme complex. This complex (referred to as a holoenzyme) ensures the recognition of the consensus promoter sequences of the individual genes and the initiation of transcription. Seven sigma factors were found in Corynebacterium glutamicum. The genome of this bacterium encodes one primary factor σA and another six alternative sigma factors: σB , σC , σD , σE , σH a σM . These alternative sigma factors are expressed in response to changes in the internal and external environment and ensure the adaption of the bacterium to growth conditions. They are also one of many ways to regulate gene expression at the transcriptional level. In specific cases, the regulation of gene expression is caused by alternative sigma factors that recognize corresponding dual (recognized alternatively by two sigma factors) or overlapping promoters. Thus, the genes controlled by these promoters are classified into overlapping regulons. Key words: Corynebacterium glutamicum, sigma factor, RNA polymerase, transcription, promoter, regulons, RNA-seq, in vitro transcription, in vivo two-plasmid system
Podnikatelský záměr webové služby Hostessguide
Křenková, Monika
Křenková, M. Business plan of HostessGuide service. Bachelor thesis. Brno: Mendel university in Brno, 2017. The text describes how to create a business plan for HostessGuide service.
Function of stress sigma factors of RNA polymerase SigD, SigE, SigH and SigM in transcription regulation network of Corynebacterium glutamicum
Dostálová, Hana ; Pátek, Miroslav (advisor) ; Bobek, Jan (referee) ; Halgašová, Nora (referee)
Grampositive bacterium Corynebacterium glutamicum is an important industrial producer of amido acids and other metabolites. Its genome encodes 7 sigma (σ) subunits of RNA polymerase: primary factor σA , primary-like σB and five alternative sigma factors, σC , σD , σE , σH and σM (sigma factors with extracytoplasmic function). This study is focused on revealing so far unknown regulons of stress sigma factors or closer description of regulons whose genes are controled by σD , σE , σH and σM . These factors were partially described for their activity during surface (σD and σE ), heat (σE , σH and σM ) and oxidative (σH and σM ) stress response. We assumed that the genes of each regulon are transcribed from promoters of a single class. For the purpose of detailed promoter analysis, it was necessary to develop methods which can quickly and reliably assign sigma factor to particular promoters and, thus, respective genes. For this purpose, a combination of in vivo (two-plasmid system) and in vitro (in vitro transcription) techniques was developed that allow to specify this assignment. We identified 9 σH /σE - promiscuous promoters (PamtR, Pcg0378, Pcg1121, Pcg3309, Pcg3344, PclgR, PdnaJ, PdnaK and PsigB), 7 σD /σH - promiscuous promoters (Pcg0607, Pcg2047, Pcmt2, PfadD2, Plpd, PlppS and PrsdA) a 9 σH /σM...
Clinical classification of sequence variants in non-coding regulatory regions in breast cancer susceptibility genes.
Bubáková, Eliška ; Ševčík, Jan (advisor) ; Vodička, Pavel (referee)
Inactivation of tumor supressor gene BRCA1 causes a life-long risk of breast carcinoma development. Genetic screenings of indicated individuals from high-risk families help to identify large number of sequence variants in known predisposing genes. Majority of discovered variants doesn't have clinical significance yet which causes a big problem for diagnostics. Some of these variants are found within regulatory non-coding regions of gene. A part of the clinical classification of variants is their functional characterization. The goal of this thesis was to create a model system for functional characterization of variants in non-coding regions and to verify its function. Model system was based on targeted gene manipulation by co-transfecting CRISPR-Cas9 construct and donor construct that contained a portion of BRCA1 gene sequence with analyzed modifications, into U2 OS cells. The cells have stably integrated DR-GFP system which allows the activity of homologous recombination (HR) to be determined. Monoallelic modifications were induced into U2 OS cells. These modifications were in a Kozak sequence region of BRCA1 gene. Expression level of BRCA1 mRNA was determined by qRT-PCR, which showed the same levels of mRNA in all cells with analyzed alterations. Next, expression level of BRCA1 protein was...
Hybrid sigma factors of RNA polymerase in Corynebacterium glutamicum
Blumenstein, Jan ; Štěpánek, Václav (advisor) ; Krásný, Libor (referee)
Corynebacterium glutamicum is a Gram-positive non-sporulating soil bacterium which is used in biotechnology as a producer of amino acids, nucleotides, biofuels and alcohols. The aim of this thesis was to create a hybrid σ factor of RNA polymerase which would be able to recognize a matching hybrid promoter without effect on expression of the host genes. Based on the σD and σH amino acid sequence, two types of hybrid factors, σDH and σHD , were designed by the sequence combination of sigD and sigH. As an alternative approach, based on the in silico homology modeling, mutations of wild-type σH in the region recognizing the -35 promoter element of the σH -dependent promoter were introduced. Hybrid promoters were constructed by combining the -35 and -10 promoter regions that were derived from the σD - and σH - dependent promoters. Promoter activity was determined by using gfpuv reporter gene under the control of hybrid promoter. The expression of gfpuv in strains with hybrid sigma factors σDH / σHD and hybrid promoters was rather low compared to strains that carried wild-type σ factor and the respective promoter. The aim of the thesis was achieved by using one of the mutant σH factor (σmutH_6A ) with alterations in the region recognizing the -35 element of the σH -dependent promoter. This mutant σ...

National Repository of Grey Literature : 44 records found   beginprevious15 - 24nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.