National Repository of Grey Literature 74 records found  previous11 - 20nextend  jump to record: Search took 0.02 seconds. 
Support of physical interaction between hyaluronan and selected hydrophobic solutes
Michalicová, Petra ; Kislinger, Jiří (referee) ; Pekař, Miloslav (advisor)
The method of fluorescence spectroscopy was applied for the studying of the way of the hyaluronan-fluorescence probe system`s preparation on mutual interaction in water. Several experiments with fluorescence probes pyrene, prodan, perylene and diphenylhexatriene (DPH) had been submitted. The first part of the experiments deals with the verification of the results of T. Brown`s work and it was focused on the study of simple interaction between hyaluronan and hydrophobic compounds. In the second part of the work hyaluronan was dried at higher temperature followed by adding of the fluorescence probe. The aim of this method was the distraction of hyaluronan`s moisture packaging and the opening up the hydrophobic parts of the chain for the fluorophore. Although wide concentration ranges of fluorescence probes had been tested in the first experiments, the interactions hadn`t been observed. The similar results were obtained in the second part of the experiments.
Microviscosity probes in study of aggregation in a biopolymer-surfactant system.
Vašíčková, Kamila ; Vala, Martin (referee) ; Mravec, Filip (advisor)
The effect of cationic surfactant concentration and ionic strength on anisotropy of fluorescence of probes diphenylhexatrien and fluorescein has been investigated in the system of cationic surfactant and in the system of cationic surfactant and hyaluronan. The investigation has been done by fluorescence emission spectroscopy. Obtained anisotropy gives information about microviscosity of investigated systems. Subsequently the system of cationic surfactant and hyaluronan has been investigated by 9-(2-carboxy-2­cyanovinyl)julolidine, 4-(dicyanovinyl)julolidine and 1,3-bispyrenylpropane probes. The information about the microviscosity of the system gives the integral under the emission curve of 9-(2-carboxy­2-cyanovinyl)julolidine and 4-(dicyanovinyl)julolidine and the ratio between excimer and monomer of 1,3-bispyrenylpropane. It has been discovered that the ionic strength influences the anisotropy of diphenylhexatrien and fluorescein only in the fist addition of salt (concentration 0,025 mol dm-3) and that addition of hyaluronan influences the anisotropy of diphenylhexatrien and fluorescein only in samples without addition of salt. Results of measurment with 9-(2-carboxy­2-cyanovinyl)julolidine and 4­(dicyanovinyl)julolidine describe the formation of aggregates of catinoc surfactant with hyaluronan and characterize these aggregates from the point of microviscosity.
Nanocarriers based on hydrophobized biopolymer
Velcer, Tomáš ; Hnyluchová, Zuzana (referee) ; Venerová, Tereza (advisor)
This work studies the properties of hydrophobically modified biopolymers for potential use in targeted drug delivery. Two samples of hydrophobically modified hyaluronan were selected. The critical micelle concentration (CMC) of these samples was measured using fluorescence spectroscopy, wherein it was found that micelle formation occurs over a wide concentration region. Environment of 0,15 M NaCl causes the decrease of CMC only slightly or not at all. Using the method of dynamic light scattering, particle size was measured. One of the samples exhibited a double size distribution. DLS results are consistent with the results of fluorescence spectroscopy at issue in aggregates forming near the CMC point. Zeta potential measurements provide information about stability of the samples. The results of this study confirm that one of the studied samples seems to be a suitable candidate for the post of drug carrier for targeted delivery.
Hyaluronan ion complexes
Cimalová, Jana ; Sedlařík, Vladimír (referee) ; Pekař, Miloslav (advisor)
This diploma thesis is focused on the study of physical and chemical properties of hyaluronan and cationic surfactant. As the cationic surfactant Septonex was used. The influence of the environment on the system, the effect of molecular weight of hyaluronan, and its concentration was studied. Then, the study of the influence and the effects of concentration of Septonex on the interaction of hyaluronan-surfactant followed. Different methods of measurement were chosen to characterize these ionokomplexes. The critical micelle concentration of the surfactant itself was measured, and then also with the addition of hyaluronan by spectrofluorimetry with fluorescent probe pyren. It was found, that hyaluronan forms gel with Septonex. On this basis, gels were prepared for three different molecular weights of hyaluronan – 300 kDa, 806 kDa and 1697 kDa. Gels were prepared in a ratio of hyaluronan – surfactant 1:1. In gels prepared in this way, the influence of environmental water and 0.15 M NaCl was studied and it was found that at 0.15 M NaCl clear gels are formed. Selected samples of the gels were then measured with oscillatory testing and the rheological behavior of gels of Septonex was studied. As the last method the turbidimetric measurement was chosen, which characterized the turbidity point in the gradual addition of Septonex to sodium hyaluronate solution. Again, the effect of the molecular weight of hyaluronan and its concentration in two environments - water and 0.15 M NaCl was evaluated. It was found that 0,15 M NaCl suppresses formation of turbidity and formation of precipitates.
Native hyaluronan as delivery agent for hydrophobic molecules
Michalicová, Petra ; Márová, Ivana (referee) ; Pekař, Miloslav (advisor)
Hyaluronan is a chemical, which can be qualified as essential for vertebrates. It is a part of the extracellular matrix in most of tissues and also a major component of some other tissues. Besides of the mechanical functions this compound is important for many biological processes such as growth of tumor cells. The objective of this thesis was development of carrier systems containing native hyaluronan and hydrophobic drugs. For purposes of this work fluorescence probes (pyrene, prodan, perylene, DPH, mereocynine 540) instead of drugs were used. By using further mentioned sophisticated methods the properties of these systems were studied. The systems were prepared by freeze-drying. The effect of freeze-drying on support of interactions was observed by fluorescence spectrometry (steady-state and time-resolved). The stability of freeze-dried systems was determined by zeta potential, which was measured by electrophoretic light scattering. Cakes obtained by freeze-drying were analyzed by several methods. First one was effluence gas chromatography connected with FT-IR spectrometry. In this method the present of tertiary butyl alcohol in product was observed. The cakes were also analyzed by scanning electron microscopy, which can provide the information about the surface and elemental constitution of the material. The results of this work can shed light on the area of developing of drugs with targeted distribution of active compound.
Preparation of photon-upconversion nanoparticles
Kelarová, Štěpánka ; Křivánková,, Jana (referee) ; Hlaváček,, Antonín (advisor)
The present work aimed to characterize photon-upconversion nanoparticles based on lanthanides. The synthesis of NaGdF4:Yb/Tm@NaGdF4:Eu core-shell nanoparticles using a europium activator was designed based on the available literature. Prepared upconversion nanoparticles showed emission in visible spectral range due to energy migration-mediated upconversion (EMU). The upconversion mechanism was initiated using a 980 nm excitation beam. The optical properties of prepared nanoparticles were examined using fluorescence spectroscopy. This work describes the evolution of optical properties of upconversion nanoparticles in dependency on the europium concentration in the shell in the range of 1560 mol. %. It was proved that decrease of europium concentration from 60 mol. % to 15 mol. % led to the increased intensity of emitted radiation. Thus, the efficiency of the upconversion process can be improved by the appropriate choice of europium concentration. The present study compares the upconversion efficiency of prepared NaGdF4:Yb/Tm@NaGdF4:Eu nanoparticles with standard NaYF4:Yb, Er nanoparticles using erbium activator.
Hyaluronan hydrogels for medical applications
Janča, David ; Krouská, Jitka (referee) ; Venerová, Tereza (advisor)
This work studies properties of hydrogels prepared by the interaction of polyelectrolyte hyaluronate with cationic surfactant cetyltrimethylammonium bromide (CTAB) in a model physiological solution of 0,15 M NaCl. Effects of different pH and final pH of different samples of hydrogels were studied. Furthermore, stability of hydrogels was observed by fluorescence spectroscopy, where pyrene was used as a fluorescence probe, and isothermal microcalorimetry. It was found that low temperature disrupts gel integrity and it is not recommended to expose hydrogels to other than a neutral pH.
Solubilizattion properties of polysaccharides
Lenartová, Radka ; Foglarová, Marcela (referee) ; Pekař, Miloslav (advisor)
In this diploma thesis were studied solubilization properties of polysaccharides by using hydrophobic solutes (Sudan Orange G, Sudan Red G, (±)-alpha-Tocopherol, Pyrene, Perylene, Nile red), which were represented by alkyl derivates of hyaluronan. At first, a behaviour of individual hydrophobic solutes was investigated in variously polar solvents (Methanol, 1 Propanol, Chloroforme, Cyklohexane, n Heptane) and in the environment of varying ionic strength (water, 0.1 M and 0.4 M NaCl). Afterwards, solubilization properties of Sodium Dodecyl Sulfate model solubilizated the hydrophobic solutes into a core of micelles was examinate. We were interested in the solubilization capacity as the mol of solubilized molecules per mol micelles of surfactant corresponding with a state of micelles saturation. In the case of the solubilization of (±)-alpha-Tocopherol into the core of micelles, it was not possible to determine the solubilization capacity. So we changed the determination of universally solubilization power. The solubilization power is defined as mol of molecules solubilized per mol surfactant relative to the quantity solubilizate at the micelles saturation. Model system of Sodium Dodecyl Sulfate as a simple surfactant carrying a negative charge as the alkyl derivates of hyaluronan was selected bacause of its characteristics.The surfactant forms unimolar micelles and its critical micelle concentrations and aggregation numbers are tabelated for the investigated microenvironment. The main aim of the study was investigating of hydrophobic domains of alkyl derivates of hyaluronan as free places for incorporation hydropbobic solutes in the microenvironment of varying ionic strength. The critical aggregation concentrations were determined by the Pyrene 1:3 ratio method. For the research of micropolarity of alkyl derivates hyaluronan’s domains were selected two concentrations of derivates for the next research of solubilization experiments - the first concentration near the critical aggregation concentration and the second concentration above it. The effect of concentration of Pyrene on a core polarity of derivates was investigated. We discovered the influence of the concentration and the other we found a stationary area of the concentration. In the end we investigated the influence of preparation of solutions of derivates of hyaluronan on the core polarity by the concentration of pyrene which corresponds to the stationary area. The study of solubilization properties of alkyl derivates of hyaluronan is not a simple case as we assumed. When we measured spectra of the absorbance, higher concentration of derivates of hyaluronan belittle absorbance of solubilizates. At the experiment of solubilization with Sudan Red G we found out that Sudan Red G is not able to solubilizate into the hydrophobic core of micelles of hyaluronan’s derivates because of lipophilic or steric effects. We had to change Perylene as a new solubilizate. From the measured emission spectra we found saturation micelles. We can express the solubilization power of hyaluronan’s derivates for the concentration of Perylene. The main aim of the diploma thesis was to determine optimal way of the preparation of hyaluronan’s derivates solutions with required degree of solubilization.
Colloidal particles marked with biopolymer
Pihíková, Dominika ; Víteček,, Jan (referee) ; Mravec, Filip (advisor)
The effect of hydrophobically modified hyaluronan on surfactants aggregation has been studied in this master’s thesis. The value of critical micelle concentration of anionic surfactant SDBS (sodium dodecylbenzensulfonate), cationic surfactant CTAB (cetyltrimethylamonnium bromide) and nonionic surfactant Triton X-100 (octylphenol ethoxylate) was determined by fluorescence spectroscopy using pyrene probe. Aggregation behavior of surfactants was performed with addition of hydrophobically modified hyaluronan of two molecular weights (17 kDa, 206 kDa) in aqueous solution. The greatest influence of hydrophobized hyaluronan on aggregation behavior was observed in system with cationic surfactant CTAB. Stability of system containing cationic surfactant and hydrophobically modified hyaluronan was established through zeta potential. Last part of thesis deals with size determination using dynamic light scattering.
Interaction of trimethylchitosan with Niaproof surfactant
Zbořilová, Hana ; Krouská, Jitka (referee) ; Mravec, Filip (advisor)
This thesis is focused on the study of interaction of the polycation N,N,N-trimethylchitosan (TMC) with the anionic surfactant Niaproof® 4 in water and physiological saline solution. Due to the commercial unavailability of N,N,N-trimethylchitosan, the polymer was first synthesized from chitosan, followed by NMR and FTIR characterization. Before the study of the system polycation–anionic surfactant itself, the behavior of the anionic surfactant Niaproof® 4 in aqueous solution and physiological saline solution was explored. The micellization of the surfactant Niaproof® 4 and the aggregation of TMC–Niaproof® 4 system were observed by fluorescence spectroscopy using the fluorescence probe pyrene. Values of critical micelle and critical aggregation concentration were determined on the basis of measurements. It was confirmed that presence of the sodium chloride supports the micellization by increasing the ionic strength of the solution, which leads to decrease of CMC in physiological saline solution. The interaction of TMC–Niaproof® 4 occurs at lower concentration then CMC in both aqueous and physiological environments. Phase separation occurs at higher concentrations of the surfactant leading to stabilization of the system.

National Repository of Grey Literature : 74 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.