Národní úložiště šedé literatury Nalezeno 19 záznamů.  předchozí11 - 19  přejít na záznam: Hledání trvalo 0.00 vteřin. 
The role of pre-mRNA splicing in human hereditary diseases
Malinová, Anna ; Staněk, David (vedoucí práce) ; Vanáčová, Štěpánka (oponent) ; Krásný, Libor (oponent)
Malá jaderná ribonukleoproteinová částice U5 (U5 snRNP) je jednou z hlavních komponent spliceozomu, komplexu který katalyzuje sestřih pre-mRNA. U5 snRNP je tvořena molekulou RNA a několika proteiny, nicméně o tom jak jsou jednotlivé díly postupně skládány v maturovanou částici, se mnoho neví. Ukázali jsme, že po depleci proteinu PRPF8, jedné z klíčových složek U5 snRNP, se částice správně neskládají a akumulují se v jaderných strukturách zvaných Cajalova tělíska. K objasnění role PRPF8 v biogenezi U5 snRNP jsme se dále rozhodli využít mutace tohoto proteinu, které byly identifikovány u pacientů s degenerativním onemocněním oční sítnice, retinitis pigmentosa (RP). Vytvořili jsme stabilní buněčné linie exprimující mutantní varianty proteinu PRPF8 a ukázali jsme, že RP mutace narušují skládání U5 snRNP, což následně vede ke snížení efektivity sestřihu pre-mRNA v buňkách. Mutantní PRPF8 se spolu s proteinem EFTUD2 hromadí v cytoplazmě a vytvoření tohoto komplexu je zdá se prvním krokem skládání U5 snRNP. Dále jsme s využitím proteomických metod identifikovali řadu nových faktorů včetně komlexu HSP90/R2TP a proteinu ZNHIT2, které se váží na U5 snRNP. Naše výsledky ukazují, že tyto faktory preferenčně interagují...
Formation of splicing machinery in the context of the cell nucleus
Stejskalová, Eva ; Staněk, David (vedoucí práce) ; Vanáčová, Štěpánka (oponent) ; Malínský, Jan (oponent)
Většina genů kódujících proteiny vyšších eukaryot obsahuje introny, které musí být odstraněny z primárních transkriptů. Vznikající mRNA může být poté použita jako templát pro syntézu proteinů. Sestřih intronů probíhá za pomoci složitého sestřihového komplexu, který se skládá z malých jaderných ribonukleoproteinových částic. Tyto částice vznikají během několika postupných kroků, které se odehrávají jak v jádře, tak v cytoplazmě. Sestřihový komplex se poté postupně skládá na molekule pre- mRNA. Jedná se o velmi dynamický a přesně regulovaný proces, který závisí nejen na sekvenci samotné pre-mRNA, ale záleží i na stavu celého jádra, např. na modifikacích chromatinu. Mezi základní nezodpovězené biologické otázky patří například: Jak buňky řídí, kdy a kde se sestřihový komplex poskládá? Co předurčuje, které introny budou vystřiženy? V této práci zkoumáme sestřihový komplex a jeho skládání v kontextu buněčného jádra z několika různých úhlů pohledu. Za prvé se věnujeme neočekávané souvislosti mezi sestřihovým faktorem U1-70K a komplexem SMN (z angl. survival of motor neurons), který je hlavním účastníkem biosyntetické dráhy malých jaderných ribonukleoproteinových částic. Podařilo se nám odhalit, že protein U1-70K interaguje s komplexem SMN a že tato interakce je klíčová pro stabilitu gems, malých nemembránových...
Mapping of SART3 interactions with spliceosomal snRNPs
Klimešová, Klára ; Staněk, David (vedoucí práce) ; Hnilicová, Jarmila (oponent)
Sestřih pre-mRNA je katalyzován obrovským a velmi dynamickým sestřihovým komplexem, který se skládá z pěti malých jaderných ribonukleoproteinových částic (označovaných jako snRNP) a více než stovky dalších proteinů. Biogeneze sestřihových snRNP částic je komplikovaný proces, jehož závěrečné kroky se odehrávají ve specializovaných jaderných útvarech, Cajalových tělíscích. Molekulární podstata cílení snRNP částic do Cajalových tělísek však zůstává nejasná. Naše předchozí výsledky odhalily, že protein SART3 je důležitý pro akumulaci U4, U5 a U6 snRNP v Cajalových tělíscích, není ale známo, jakým způsobem SART3 tyto sestřihové částice váže. SART3 byl původně identifikován jako interakční partner U6 snRNP a faktor napomáhající složení U4/U6 di-snRNP částice. V této práci nicméně ukazujeme, že SART3 interaguje také s U2 snRNP a že specificky váže nesložené U2 částice. Dále poskytujeme důkazy, že SART3 asociuje s U2 snRNP přes Sm proteiny, které tvoří stabilní jádro čtyř z pěti hlavních snRNP částic (tzn. U1, U2, U4 a U5). Na základě našich výsledků navrhujeme, že interakce mezi SART3 a Sm proteiny představuje obecný mechanismus, jak SART3 rozpoznává nekompletní snRNP částice a kontroluje tak jejich skládání v Cajalových tělíscích.
Recyklace sestřihových komplexů
Klimešová, Klára ; Staněk, David (vedoucí práce) ; Hálová, Martina (oponent)
Ve většině lidských genů jsou kódující úseky (exony) přerušovány dlouhými nekódujícími sekvencemi (introny). Po přepisu genu do pre-mRNA musí být tyto introny velmi přesně vyštěpeny v procesu zvaném sestřih. Sestřih je zajišťován velmi složitým a dynamickým sestřihovým komplexem, který se skládá z pěti malých jaderných ribonukleoproteinových částic (snRNP) a řady sestřihových proteinů. Každá částice obsahuje jednu malou jadernou RNA a několik specifických proteinů a vzniká postupným procesem, který se odehrává v jádře i cytoplazmě. Závěrečné úpravy pak probíhají v jaderných Cajalových tělíscích. Hotové částice nasedají v přesně daném pořadí na pre-mRNA a formují komplex, který katalyzuje dvě transesterifikační reakce potřebné k vystřižení intronu a spojení okolních exonů a následně se opět rozpadá na jednotlivé snRNP. Ribonukleoproteinové částice během sestřihu podstupují nejrůznější změny jak v konformaci, tak v proteinovém složení. Proto musí před každým dalším kolem sestřihu projít recyklačními úpravami a vrátit se do stavu vhodného pro připojení k novému sestřihovému komplexu. Recyklační fázi sestřihového cyklu nicméně zatím obklopuje více otázek než odpovědí. Cílem této práce je pokusit se ve světle nových poznatků alespoň na některé z nich odpovědět.
Functional analysis of hPrp8 mutations linked to retinitis pigmentosa.
Matějů, Daniel ; Cvačková, Zuzana (vedoucí práce) ; Král, Vlastimil (oponent)
hPrp8 je esenciální faktor účastnící se sestřihu pre-mRNA. Tento vysoce konzervovaný protein je součástí U5 malé jaderné ribonukleoproteinové částice (U5 snRNP), která představuje jednu ze základních komponent spliceozomu. hPrp8 působí jako klíčový regulátor aktivace spliceozomu a interaguje přímo s U5 snRNA a s oblastmi pre-mRNA, které se účastní transesterifikačních reakcí během sestřihu. Mutace v hPrp8 způsobují autozomálně dominantní formu retinitis pigmentosa (RP), dědičného onemocnění, které vede k postupné degeneraci sítnice. V této práci jsme zkoumali, jak mutace spojené s RP ovlivňují funkci proteinu hPrp8. Použili jsme metodu 'BAC recombineering' k vytvoření mutovaných variant hPrp8-GFP a připravili jsme stabilní buněčné linie exprimující tyto rekombinantní proteiny. Mutované proteiny byly exprimovány a lokalizovány do jádra, avšak jedna z bodových mutací výrazně ovlivnila lokalizaci a stabilitu hPrp8. Další experimenty napověděly, že mutace spojené s RP ovlivňují schopnost hPrp8 interagovat s dalšími komponenty U5 snRNP a s pre-mRNA. Dále jsme studovali biogenezi U5 snRNP komplexů. Pomocí siRNA jsme odstranili hPrp8 a narušili tak formování U5 snRNP komplexu. Zjistili jsme, že nekompletní U5 snRNP komplexy se hromadí v Cajalových tělískách, což značí, že tyto jaderné struktury hrají roli...
Spliceosome assembly
Hausnerová, Viola ; Staněk, David (vedoucí práce) ; Chalupníková, Kateřina (oponent)
Introny jsou vystřiženy z eukaryotických transkriptů a exony jsou spojeny dohromady během procesu zvaného sestřih pre-mRNA. Sestřih je katalyzován sestřihovým komplexem. Jedná se o velký ribonukleoproteinový komplex složený z pěti malých jaderných RNA a více než stovky proteinů. Tento komplex rozpoznává 5' sestřihové místo, místo větvení a 3' sestřihové místo a následně provádí dvě transesterifikační reakce, jejichž výsledkem je zralá molekula mRNA. V rámci časného sestřihového komplexu je 5' sestřihové místo definováno pomocí U1 snRNP a na rozpoznání místa větvení a 3' sestřihového místa se podílí U2 pomocný faktor (U2 auxiliary factor, U2AF). Spolupráce sestřihových míst byla částečně popsána in vitro, ale situace in vivo není dosud zcela objasněna. V této studii jsme použili fluorescenční rezonanční energetický transfer (Fluorescence resonance energy transfer, FRET) a RNA imunoprecipitaci (RIP) k popsání časných kroků skládání sestřihového komplexu. Abychom detekovali interakce proteinů na RNA molekule přímo v buněčném jádře, uplatnili jsme sestřihové reportéry kódující -globinový gen a vlásenky z fága MS2. Výsledky FRETu ukazují, že intaktní 5' sestřihové místo je vyžadováno pro vazbu U2AF35 na 3' sestřihové místo a že vazba U1C je částečně omezena v přítomnosti mutace 3' sestřihového místa. Dále jsme...
Regulace pre-mRNA sestřihu v prostředí buněčného jádra
Hnilicová, Jarmila ; Staněk, David (vedoucí práce) ; Půta, František (oponent) ; Dvořák, Michal (oponent)
Eukaryotní geny obsahují nekódující sekvence - introny, které jsou z pre-mRNA odstraňovány sestřihovými komplexy. Sestřihové komplexy se skládají z pěti RNA-proteinových podjednotek (U1, U2, U4/U6 a U5), které postupně nasedají na pre-mRNA a jsou společně s dalšími bílkovinami nutné pro vystřižení intronu. Mutace v bílkovinách důležitých pro RNA sestřih mohou způsobovat vážná onemocněním, například mutace zvaná AD29 vedoucí k záměně jediné aminokyseliny v proteinu hPrp31 (tato bílkovina je součástí U4/U6 sestřihového komplexu) je příčinou nemoci retinitis pigmentosa, která často končí úplnou slepotou. Ukázali jsme, že hPrp31 AD29 mutant je nestabilní a není řádně začleněný do sestřihových komplexů. Přesto vadný hPrp31 zřejmě má vliv na metabolismus buňky, protože zpomaluje buněčný růst a dělení, což by mohlo vysvětlit, proč tato mutace vede k retinitis pigmentosa. Dále se zaměřujeme na roli buněčného jádra v pre-mRNA sestřihu. Nové U4/U6·U5 snRNP částice jsou přednostně skládány v nemembránových jaderných strukturách - Cajalových tělíscích. Zjistili jsme, že Cajalova tělíska jsou také důležitá pro recyklaci U4/U6·U5 snRNP. Vedle toho jsme se zaměřili na roli chromatinu (především acetylace histonů) při regulaci alternativního sestřihu. Pomocí inhibitorů histonových deacetylázy jsme změnili...
Formování sestřihových snRNP v buněčném jádře
Novotný, Ivan ; Staněk, David (vedoucí práce) ; Cmarko, Dušan (oponent) ; Forstová, Jitka (oponent)
1 ABSTRAKT V eukaryotickém buněčném jádře existuje mnoho struktur, suborganel a tělísek. Tyto struktury poskytují jádru mnoho specifických funkcí. Jadérko se specializuje na skládání ribozomů, jaderné "speckles" nebo též SFC, hrají důležitou roli v úpravách RNA a nejlépe prostudovaná jaderná tělíska, Cajalova tělíska (CB), jsou zapojená do maturace snRNP částic. Bezmembránové kompartmenty nejsou unikátní jen pro buněčné jádro, cytoplasmatická tělíska zvaná P bodies jsou pravděpodobně důležitými místy v dráze degradace mRNA. Tato práce je souborem čtyř projektů zaměřených na bezmembránové buněčné struktury, jmenovitě jaderné CB a cytoplasmatické P bodies. Oba druhy buněčných struktur, CB i P bodies, jsou dynamické struktury, které stále vyměňují své součásti se svým okolím. CB je obecně akceptováno jako místo biogeneze snRNP. My jsme ukázali, že v CB jsou snRNP také regenerovány po sestřihu. CB tedy hraje důležitou roli v recyklaci snRNP částic. Kombinací kinetických experimentů a matematického modelování jsme vytvořili kinetický model formování tri-snRNP komplexu v CB na základě kterého jsme určili kinetické parametry skládání tri-snRNP. Podle našeho modelu se v CB skládá tri- snRNP 11x efektivněji než v nukleoplasmě. Identifikovali jsme specifický faktor pro cílení a lokalizaci tri-snRNP komponent do CB....
Faktory důležité pro formování Cajalova tělíska
Roithová, Adriana ; Staněk, David (vedoucí práce) ; Valentová, Anna (oponent)
Tato re er e popisuje strukturu a funkci jaderných domén nazývajících se Cajalova t líska (CB). CB obsahují proteiny a faktory, které se ú astní uspo ádání a modifikace snRNP. Tyto t líska se nachází u obratlovc i bezobratlých a nejdeme je i v rostlinách. Ne v echny typy bun k v ak obsahují CB. Jejich po et a velikost se odvíjí od transkrip ní aktivity bu ky a fázi bun ného cyklu. Tato práce pojednává o faktorech, které mají vliv na formaci CB. Jeden z nejd le it j ích faktor je hladina snRNP a transkrip ní aktivita. V poslední dob se v ak ukazuje, e významnou roli ve formaci CB má i fosforylace coilinu a jiných komponent. Jiné studie ukazují na vliv okolního prost edí. Také se zde diskutuje regulace biogeneze CB, která není je t zcela objasn na. Klí ová slova: Cajalovo t lísko, coilin, bun né jádro, snRNP, pre-mRNA sest ih, transkripce

Národní úložiště šedé literatury : Nalezeno 19 záznamů.   předchozí11 - 19  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.