Národní úložiště šedé literatury Nalezeno 30 záznamů.  předchozí11 - 20další  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Elektrické výboje ve vodných a organických roztocích
Klímová, Edita ; Brablec, Antonín (oponent) ; Kozáková, Zdenka (vedoucí práce)
Práce je zaměřena na studium elektrických výbojů v kapalinách s důrazem na vodné roztoky. Generací výboje ve vodných roztocích dochází k současnému působení UV záření, rázových vln, elektrického pole a především reaktivních částic. To je možné využít v mnoha aplikacích, jako je například sterilizace, rozklad odpadních organických látek, litotrypse či další medicínské aplikace. Experimentální část této práce se věnuje diafragmovému uspořádání reakčního systému, v němž je reaktor rozdělen na dva elektrodové prostory propojené pouze malým otvorem v dielektrické přepážce. Tato přepážka je v první části z keramického neporézního materiálu Macor® o tloušťce 1 mm, průměr otvoru je 0,6 mm, v druhé části je pak použita keramika ShapalTM-M o tloušťce i průměru otvoru 1 mm. Experimentální část je rozdělena do dvou hlavních oblastí. V obou částech byl jako základní elektrolyt použit NaCl, jímž byla upravena výchozí vodivost všech roztoků na hodnotu 400 S/cm. Stejnosměrné napájecí napětí je regulováno tak, aby výkon v systému byl 100 W. V první části je pak zkoumán vliv přídavku vybraných alkoholů (ethanol, isopropylalkohol a glycerol) na efektivitu výboje v jejich vodném roztoku. Pro účel těchto měření byl navržen a sestaven speciální skleněný reaktor. Efektivita výboje je měřena spektroskopickým stanovením koncentrace komplexu titanového činidla a peroxidu vodíku, generovaného během procesu výboje. Výsledky ukazují, že zavedení dodatečné OH skupiny do reakce pomocí alkoholu nemá pozitivní vliv na efektivitu výboje, přičemž při použití isopropylalkoholu dochází dokonce k významnému poklesu množství generovaného peroxidu vodíku. Obsahem druhé části je porovnání vlivu materiálu elektrod použitých pro přivedení napětí do systému na efektivitu výboje, opět určenou rychlostí tvorby peroxidu vodíku stanovenou stejnou metodou jako v části první. Jako elektrody byly zvoleny nerezavějící ocel, platina, hliník, měď a uhlík. Jednotlivé materiály vykazují různou rychlost tvorby peroxidu vodíku při jinak stejných parametrech. Jako nejperspektivnější se jeví uhlíkové elektrody, jež jsou tvořeny inertním materiálem, u kterého lze předpokládat, že nijak neiniciuje rozklad peroxidu vodíku. Nejméně výhodným materiálem je pak měď, při jejímž použití v jednom elektrodovém prostoru k tvorbě peroxidu vodíku vůbec nedochází.
Studium vlivu struktury organických barviv na jejich rozklad v diafragmovém výboji
Pajurková, Jana ; Fasurová, Naděžda (oponent) ; Kozáková, Zdenka (vedoucí práce)
Hlavním cílem této práce je studium vlivu struktury organických barviv na jejich rozklad v diafragmovém výboji ve vodných roztocích. Diafragmový výboj je jedním z mnoha typů elektrických výbojů v kapalinách. Jedná se o nízkoteplotní plazma, které je generováno pomocí vysokého napětí a v plazmových kanálcích („streamerech“) vznikají různé fyzikální a chemické procesy. Mezi fyzikální procesy patří silné elektrické pole, rázové vlny a v neposlední řadě vyzařování elektromagnetického vlnění v oblasti viditelného i UV záření. K nejdůležitějším chemickým procesům patří generace aktivních látek a částic, které pak iniciují chemické reakce a atakují molekuly organických látek obsažených v kapalinách. Organická barviva byla pro tuto práci vybrána z důvodu, že jejich rozklad je snadno pozorovatelný, protože je doprovázen odbarvováním, a je možné pro určení jejich koncentrace v průběhu měření použít UV-VIS spektroskopii. Rovněž jsou výborným příkladem organických látek, které jsou často obsaženy v odpadních vodách, a k jejich odstranění nestačí běžně používané biologické, chemické a fyzikální procesy. Použitá barviva byla zvolena převážně ze skupiny azobarviv a byla to: Acid Red 14, Acid Red 18, Acid Yellow 23, Direct Blue 53, Direct Red 79, Direct Red 80, Direct Yellow 29 a Food Yellow 3 a dále Acid Blue 74 (indigoidní barvivo) a Direct Blue 106 (oxazinové barvivo). Pokusy byly prováděny ve speciálním zařízení s odděleným anodovým a katodovým prostorem nevodivou přepážkou, v níž byla uchycena diafragma se špendlíkovou dírkou. Měření ukázala rozdílné odbourání v katodovém a anodovém prostoru, což je nejspíše způsobeno odlišnými charakteristikami výbojových kanálků. Barviva se více odbourávala v anodovém prostoru a to přibližně na 40 % jejich původní koncentrace, zatímco v prostoru katodovém se konečná relativní koncentrace pohybovala okolo 90 %. V práci je zkoumán vliv struktury barviva na odbourání během elektrického výboje a bylo zjištěno, že lépe se odbourávají barviva složená z menších molekul a z větších barviv ta, která obsahují velký počet skupin navázaných na aromatických jádrech ve skeletu molekuly. Během odbourávání barviva docházelo zejména u přímých (Direct) barviv ke změně charakteristické vlnové délky k vyšším i nižším vlnovým délkám. Tento jev je pravděpodobně způsoben vznikem meziproduktů, které mají jinou charakteristickou vlnovou délku než samotná molekula barviva. Za barevnost je odpovědný dostatečně dlouhý konjugovaný systém dvojných vazeb se substituenty navázanými na aromatická jádra. Každý zásah do struktury molekuly barviva má za následek změnu barevnosti látky, a tím by mohl být vysvětlen posun vlnových délek. Dalším úkolem bylo srovnání účinnosti rozkladu barviv elektrolýzou a výbojem. Výsledky srovnání ukazují, že elektrolýza (30 W) je vhodná pro rozklad barviv složených z malých molekul a diafragmový výboj (130170 W) pro složitější molekuly barviv. Pro menší molekuly stačí oxidace na anodě, kterou poskytuje elektrolýza, kdežto pro odstranění větších molekul je třeba spolupráce této oxidace na anodě a aktivních částic, které se tvoří při výboji.
Studium sterilizačního účinku diafragmového výboje v kapalinách
Holíková, Lenka ; Slámová, Jitka (oponent) ; Kozáková, Zdenka (vedoucí práce)
Hlavním cílem této bakalářské práce je studium sterilizačního účinku diafragmového výboje v kapalinách. Sterilizace je proces, při kterém dochází k eliminaci všech forem života. Obecně se sterilizace dělí na fyzikální a chemické. Plazmová sterilizace je řazena do fyzikálních metod, ačkoliv se v ní uplatňuje i působení chemických procesů. Využívá se při ní vlivů UV záření, volných radikálů a teploty. Jako modelové mikroorganismy jsou v této práci využívány spóry plísně Aspergillus niger F8189 a spóry bakterie Bacillus subtilis. Aspergillus niger je vhodný mikroorganismus pro jeho odolnost vůči změnám pH, je životaschopný v širokém rozmezí hodnot pH. Bacillus subtilis je vybrán kvůli dobré teplotní rezistenci. Diafragmový výboj je jedním z možných typů elektrických výbojů buzených v kapalinách. Jedná se o nízkoteplotní plazma, které je generováno pomocí vysokého stejnosměrného napětí. V plazmových kanálcích („streamerech“) vznikají různé fyzikální a chemické procesy. Mezi chemické procesy patří hlavně generace aktivních látek a částic, které iniciují chemické reakce a atakují spóry plísní a bakterií obsažených v kapalinách. Do fyzikálních procesů se řadí rázové vlny, silné elektrické pole a ultrafialové záření. Pokusy byly prováděny v reaktoru s odděleným katodovým a anodovým prostorem. V nevodivé přepážce byla uchycena PET diafragma s otvorem velikosti špendlíkové dírky (počáteční průměr 0,4 mm). Bylo pozorováno zvětšení otvoru v důsledku degradace materiálu na hraně dírky vlivem výboje. Odbourávání spór bylo pozorováno v závislosti na čase a na výkonu. Dalšími měřenými veličinami byly pH, vodivost a teplota. Nebylo prokázáno odlišné působení v katodovém a anodovém prostoru. Hlavním činitelem odstranění spór plísně Aspergillus niger byla pravděpodobně teplota, protože u teplotně odolnějšího mikroorganismu Bacillus subtilis nebyl pozorován prokazatelný sterilizační účinek působení diafragmového výboje. Byl také proveden pokus, při kterém byl zkoumán pouze vliv teploty na spóry plísně Aspergillus niger. Vzorky byly umístěny v termostatu, kde byl simulován stejný teplotní nárůst jako ve výboji. Experiment měl podobný průběh jako pokus ve výboji.
Studium vlivu elektrolýzy na rozklad organického barviva v diafragmovém výboji v kapalinách
Davidová, Jaroslava ; Rašková, Zuzana (oponent) ; Kozáková, Zdenka (vedoucí práce)
Tato práce je zaměřena na studium různých chemických a fyzikálních vlivů, které se podílejí na rozkladu organických látek v diafragmovém výboji, generovaném ve vodných roztocích. Tento proces se dá využít např. při čištění odpadních vod. Významný vliv na destrukci barviva má při aplikaci nepulzního stejnosměrného napětí elektrolýza. Zjištění míry příspěvku elektrolýzy na procesy ve výboji je hlavním cílem této práce. V teoretické části je uvedena základní teorie vzniku elektrického výboje v kapalinách a samotná elektrolýza s důrazem na procesy vedoucí k destrukci organických sloučenin. Jedná se zejména o produkci reaktivních částic výbojem (radikály, peroxid vodíku, ozon apod.) a elektrochemické reakce na elektrodách. Dále je v této části teoreticky rozebrána analytická metoda, podle níž byly stanovovány koncentrace barviv (UV-VIS spektroskopie). Experimentální část je zaměřena na popis průběhu experimentu, který byl prováděn v zařízení s odděleným katodovým a anodovým prostorem. Oddělení obou prostorů bylo realizováno přepážkou s dielektrickou diafragmou, přičemž propojení obou prostorů bylo zajištěno špendlíkovou dírkou o průměru 0,25 mm. Elektrolytické rozklady byly realizovány při konstantním proudu 30 mA a dodávaný výkon ze zdroje napětí se pohyboval v rozmezí 14–32 W. Pro experimenty byla vybrána dvě saturnová barviva (Direct Red 79 a Direct Blue 106). Protože rozklad barviv je doprovázen odbarvením, byla ke stanovení koncentrace použita UV-VIS spektroskopie v oblasti 380–700 nm. Ve výsledkové části jsou uvedeny různé vlivy působící na rozklad barviva. Mezi tyto vlivy patří různé polarity elektrod, vodivost a pH roztoku, použitý výkon, druh elektrolytu a struktura barviva. Elektrolýza má významný vliv na rozklad malých organických molekul. Rozklad probíhá výhradně v anodovém prostoru, tedy tzv. negativním výbojem. Nejvýhodnější je využití elektrolytu NaCl, kterým se nastaví vodivost na optimální hodnotu 500 S·cm-1. Elektrolytem NaNO3 bylo dosaženo polovičního účinku a elektrolyt Na3PO4 odbourávání neumožnil. Rozklad barviva v anodovém prostoru je také stimulován výrazným snížením pH v důsledku elektrolýzy. Obecně lze říci, že z absolutního hlediska se výbojem dosáhne většího rozkladu než elektrolýzou, ale účinnost elektrolýzy je větší. Jen elektrolýzou je možné dosáhnout vysokého procenta rozkladu při použití relativně nízkého výkonu. U větších molekul je účinnost vyšší při aplikaci výboje.
Diagnostika diafragmového výboje ve vodných roztocích a jeho aplikace pro povrchovou úpravu nanomateriálů
Dřímalková, Lucie ; Brablec, Antonín (oponent) ; Janda,, Mário (oponent) ; Krčma, František (vedoucí práce)
Přesný mechanizmus samotného zapálení výboje v roztocích není dosud znám, ačkoli v posledních několika letech došlo k velkému pokroku a přiblížením, z nichž některá jsou nastíněna v teoretické části práce. Tato práce je rozdělena na dvě experimentální části. První část se zabývá diagnostikou diafragmového výboje v roztocích elektrolytů a druhá část je zaměřena na jeho využití k rozpadu aglomerátů (vyšší homogenizaci distribuce) uhlíkových nanotrubek v roztocích. V experimentu 1 se k diagnostice diafragmového výboje v roztocích elektrolytu používaly tři různě velké reaktory (4 l, 100 ml, 50 ml) s diafragmovou konfigurací. Diagnostika probíhala pomocí časových záznamů proudu a napětí s doplněním synchronizovaných snímků z ICCD kamery, které byly zapojeny do čtyřkanálového osciloskopu. V-A charakteristiku lze popsat pomocí tří dějů probíhajících v roztoku elektrolytu za postupného zvyšování napětí. Za postupného zvyšování napětí v roztoku dochází nejdříve k elektrolýze. Další fáze je tvorba mikrobublin či bublin, která je na křivce charakteristická mírným poklesem nárůstu procházejícího proudu. Prudkým nárůstem procházejícího proudu je zase charakteristická poslední fáze a to výbojová fáze. Vzdálenost elektrod od diafragmy nijak významně neovlivňuje V-A charakteristiku. S vyšším průměrem dírky prochází vyšší proud, což však nemá vliv na počátek generace bublin či zápalné napětí. Čím je tloušťka diafragmy vyšší, tím je potřeba vyšší napětí k počátku generace bublin a následně i k zapálení výboje. Porovnáním napětí počátku generace bublin a zápalných napětí pro PET diafragmy a diafragmy z keramiky nebyl zjištěn žádný zásadní rozdíl. Jedním z nejdůležitějších parametrů je vodivost roztoku elektrolytu. Čím vyšší je vodivost roztoku, tím je potřeba nižší napětí pro počátek generace bublin a také dochází ke generaci výboje při nižším zápalném napětí. Druhá experimentální část je zaměřena na zkoumání vlivu diafragmového výboje na uhlíkové nanotrubky. Pro úpravu uhlíkových nanočástic se používá speciálně navržený reaktor ve tvaru U. Jako elektrolytický roztok je používána vodovodní voda a vodné roztoky organických sloučenin. Výboj je generován pomocí nepulzního stejnosměrného zdroje s napětím v rozmezí 0 – 2,8 kV přiváděným na platinové elektrody umístěné v roztoku elektrolytu. Výsledky měření prokázaly, že diafragmový výboj má pozitivní účinky na rozmotání shluků a aglomerátů uhlíkových nanotrubek. Primární účinek na rozmotání mají pravděpodobně rázové vlny generované výbojem. Ukázalo se, že ošetření plazmatem v katodovém a anodovém prostoru se liší. Ošetření plazmatem v anodovém prostoru má mnohem vyšší účinky než v katodovém. Účinky rozmotání uhlíkových nanotrubek roztoku jsou dlouhodobé a neztrácí svůj efekt ani po několika měsících. Pomocí infračervené spektroskopie nebyly zjištěny žádné významné změny ve struktuře plazmatem ošetřených nanotrubek.
Diagnostika diafragmového výboje ve vodných roztocích a jeho aplikace pro povrchovou úpravu nanomateriálů
Dřímalková, Lucie ; Brablec, Antonín (oponent) ; Janda,, Mário (oponent) ; Krčma, František (vedoucí práce)
Přesný mechanizmus samotného zapálení výboje v roztocích není dosud znám, ačkoli v posledních několika letech došlo k velkému pokroku a přiblížením, z nichž některá jsou nastíněna v teoretické části práce. Tato práce je rozdělena na dvě experimentální části. První část se zabývá diagnostikou diafragmového výboje v roztocích elektrolytů a druhá část je zaměřena na jeho využití k rozpadu aglomerátů (vyšší homogenizaci distribuce) uhlíkových nanotrubek v roztocích. V experimentu 1 se k diagnostice diafragmového výboje v roztocích elektrolytu používaly tři různě velké reaktory (4 l, 100 ml, 50 ml) s diafragmovou konfigurací. Diagnostika probíhala pomocí časových záznamů proudu a napětí s doplněním synchronizovaných snímků z ICCD kamery, které byly zapojeny do čtyřkanálového osciloskopu. V-A charakteristiku lze popsat pomocí tří dějů probíhajících v roztoku elektrolytu za postupného zvyšování napětí. Za postupného zvyšování napětí v roztoku dochází nejdříve k elektrolýze. Další fáze je tvorba mikrobublin či bublin, která je na křivce charakteristická mírným poklesem nárůstu procházejícího proudu. Prudkým nárůstem procházejícího proudu je zase charakteristická poslední fáze a to výbojová fáze. Vzdálenost elektrod od diafragmy nijak významně neovlivňuje V-A charakteristiku. S vyšším průměrem dírky prochází vyšší proud, což však nemá vliv na počátek generace bublin či zápalné napětí. Čím je tloušťka diafragmy vyšší, tím je potřeba vyšší napětí k počátku generace bublin a následně i k zapálení výboje. Porovnáním napětí počátku generace bublin a zápalných napětí pro PET diafragmy a diafragmy z keramiky nebyl zjištěn žádný zásadní rozdíl. Jedním z nejdůležitějších parametrů je vodivost roztoku elektrolytu. Čím vyšší je vodivost roztoku, tím je potřeba nižší napětí pro počátek generace bublin a také dochází ke generaci výboje při nižším zápalném napětí. Druhá experimentální část je zaměřena na zkoumání vlivu diafragmového výboje na uhlíkové nanotrubky. Pro úpravu uhlíkových nanočástic se používá speciálně navržený reaktor ve tvaru U. Jako elektrolytický roztok je používána vodovodní voda a vodné roztoky organických sloučenin. Výboj je generován pomocí nepulzního stejnosměrného zdroje s napětím v rozmezí 0 – 2,8 kV přiváděným na platinové elektrody umístěné v roztoku elektrolytu. Výsledky měření prokázaly, že diafragmový výboj má pozitivní účinky na rozmotání shluků a aglomerátů uhlíkových nanotrubek. Primární účinek na rozmotání mají pravděpodobně rázové vlny generované výbojem. Ukázalo se, že ošetření plazmatem v katodovém a anodovém prostoru se liší. Ošetření plazmatem v anodovém prostoru má mnohem vyšší účinky než v katodovém. Účinky rozmotání uhlíkových nanotrubek roztoku jsou dlouhodobé a neztrácí svůj efekt ani po několika měsících. Pomocí infračervené spektroskopie nebyly zjištěny žádné významné změny ve struktuře plazmatem ošetřených nanotrubek.
Příprava a charakterizace plazmatem aktivované vody
Lemonová, Hana ; Klímová, Edita (oponent) ; Krčma, František (vedoucí práce)
Tato bakalářská práce se zabývá vhodnými metodami k přípravě plazmatem aktivované vody. Teoretická část je zaměřena na seznámení se s plazmatem aktivovanou vodu a metodami k její přípravě. V experimentální části této práce byly charakterizovány vybrané fyzikálně chemické vlastnosti, a to vodivost, hodnota pH a stabilita peroxidu vodíku. Důležitým aspektem této práce bylo zjištění vhodných skladovacích podmínek pro plazmatem aktivovanou vodu. Cílem této práce bylo vygenerování PAW pomocí různých metod se stabilními vlastnostmi, kterou lze snadno skladovat. Bylo zjištěno, že při přípravě pomocí diafragmového výboje je nejlepší skladovat PAW ve tmě, kdy má stabilní vlastnosti. PAW připravená v systému trysky v kapalině je vhodná ke skladování v lednici, kdy dochází k pomalému rozkladu peroxidu vodíku. Míra účinnost mikrovlnné trysky na generaci PAW je zapříčiněna zaváděním plynu, jako je například argon.
Study of Plasma - Liquid Interactions
Němcová, Lucie ; Brablec, Antonín (oponent) ; Obradovic, Bratislav (oponent) ; Krčma, František (vedoucí práce)
This Ph.D. thesis contains a detailed investigation of different electric discharges generated in liquids. These discharges have become a popular topic during the last decade, mainly due to many practical applications for example in biomedicine, waste water treatment, ecology and nanoengineering. The study is focused on hydrogen peroxide generation which is one of the most important particles generated by electric discharges in liquids. A special batch discharge chamber, constructed at the Brno University of Technology, Faculty of Chemistry, Czech Republic, was used for the first experimental part. This discharge chamber is separated by a diaphragm membrane with a pin hole at its centre. A single high voltage electrode is placed in each part of the chamber, which is filled by water solution. High frequency voltage (1 and 2 kHz) was used as a power source to treat a NaCl solution (1.5 l). After evaluation of all results it has been found that this kind of power supply, compared to DC, does not cause any unwanted overheating of the solution (initial conductivity 100 - 800 microS/cm) during its treatment and thus the hydrogen peroxide production efficiency is quite high. The second part of this thesis was done at the Ghent University, Department of Applied Physics, Belgium. Here the DC discharge was created in gas bubbles (He, Ar, N2 or Air) flowing water solutions. NaH2PO4 . 2H2O solution (5 microS/cm, V= 750 ml) was used to hydrogen peroxide production studies, Direct Red 79 (20 mg/l) and Direct Blue 106 (20 mg/l, V= 750 ml) solutions were chosen for the organic dyes destruction study. The minimal concentration of the H2O2 was obtained when 10 mA current was applied, while the maximum concentration was observed at the current 30 mA. It leads to the conclusion that concentration of hydrogen peroxide increases with increasing applied current. The organic decomposition showed the same trend. The higher energy was applied, the more organic dye was destructed. The third part of this thesis took place at the Queen's University of Belfast, Centrum for Plasma Physics, UK using high frequency plasma scalpel (Arthrocare). It was found that the hydrogen peroxide concentration has reached the maximal value in solutions with a small addition of an alcohol (0.25 %). Four different treated liquid 0.15 M water solutions of BaCl2, Na2CO3, KCl and NaCl (V= 20 ml) were used. The initial conductivity of the samples was around 13 mS/cm. From the taken results it was obvious that the biggest difference between pH values was obtained in the solution with the additional of ethanol. The active particles generated by discharge were detected by spectra, mainly OH radicals which are understood as precursors to hydrogen peroxide. The main innovation was study of the influence of additional of organic compound on the plasma process. It was obtained that plasma still can be generated in such solution kind which can be considered as the first step to plasma created in the pure organic liquid medium. The last part of this work looked at atmospheric pressure microplasma jet interaction with the liquid phase and it was carried out at the Nanotechnology & Integrated Bio-Engineering Centre (NIBEC), University of Ulster, UK during host internship. As a liquid medium a gold (III) chloride trihydrate (HAuCl4.3H2O) aqueous solution with different initial conductivity was used. Interestingly, even a very low current (0.05 and 0.2 mA) generates stable plasma and produces hydrogen peroxide which can be understood as a very good result. Here, H2O2 behaviours as an oxidizing agent which converts gold precursors into gold nanoparticles.
Elektrické výboje ve vodných a organických roztocích
Klímová, Edita ; Brablec, Antonín (oponent) ; Kozáková, Zdenka (vedoucí práce)
Práce je zaměřena na studium elektrických výbojů v kapalinách s důrazem na vodné roztoky. Generací výboje ve vodných roztocích dochází k současnému působení UV záření, rázových vln, elektrického pole a především reaktivních částic. To je možné využít v mnoha aplikacích, jako je například sterilizace, rozklad odpadních organických látek, litotrypse či další medicínské aplikace. Experimentální část této práce se věnuje diafragmovému uspořádání reakčního systému, v němž je reaktor rozdělen na dva elektrodové prostory propojené pouze malým otvorem v dielektrické přepážce. Tato přepážka je v první části z keramického neporézního materiálu Macor® o tloušťce 1 mm, průměr otvoru je 0,6 mm, v druhé části je pak použita keramika ShapalTM-M o tloušťce i průměru otvoru 1 mm. Experimentální část je rozdělena do dvou hlavních oblastí. V obou částech byl jako základní elektrolyt použit NaCl, jímž byla upravena výchozí vodivost všech roztoků na hodnotu 400 S/cm. Stejnosměrné napájecí napětí je regulováno tak, aby výkon v systému byl 100 W. V první části je pak zkoumán vliv přídavku vybraných alkoholů (ethanol, isopropylalkohol a glycerol) na efektivitu výboje v jejich vodném roztoku. Pro účel těchto měření byl navržen a sestaven speciální skleněný reaktor. Efektivita výboje je měřena spektroskopickým stanovením koncentrace komplexu titanového činidla a peroxidu vodíku, generovaného během procesu výboje. Výsledky ukazují, že zavedení dodatečné OH skupiny do reakce pomocí alkoholu nemá pozitivní vliv na efektivitu výboje, přičemž při použití isopropylalkoholu dochází dokonce k významnému poklesu množství generovaného peroxidu vodíku. Obsahem druhé části je porovnání vlivu materiálu elektrod použitých pro přivedení napětí do systému na efektivitu výboje, opět určenou rychlostí tvorby peroxidu vodíku stanovenou stejnou metodou jako v části první. Jako elektrody byly zvoleny nerezavějící ocel, platina, hliník, měď a uhlík. Jednotlivé materiály vykazují různou rychlost tvorby peroxidu vodíku při jinak stejných parametrech. Jako nejperspektivnější se jeví uhlíkové elektrody, jež jsou tvořeny inertním materiálem, u kterého lze předpokládat, že nijak neiniciuje rozklad peroxidu vodíku. Nejméně výhodným materiálem je pak měď, při jejímž použití v jednom elektrodovém prostoru k tvorbě peroxidu vodíku vůbec nedochází.
Diagnostika plazmatu výboje ve vodných roztocích a jeho aplikace
Holíková, Lenka ; Brablec, Antonín (oponent) ; Kozáková, Zdenka (vedoucí práce)
Tato práce pojednává o studiu parametrů diafragmového výboje ve vodném roztoku. Jako vodivé médium byl používán roztok NaCl o různých vodivostech. Vodivosti byly nastavovány v rozmezí 220 až 1000 µS cm-1. Byly použity dvě diagnostické metody pro zkoumání parametrů plazmatu. První z nich probíhala v Laboratoři plazmochemie na Fakultě chemické Vysokého učení technického v Brně, a sice optická emisní spektroskopie. Jako druhá metoda byla použita diagnostika pomocí časově rozlišené ICCD kamery v Laboratoire de Physique des Plasmas na École Polytechnique v Paříži. Reaktor pro měření emisních spekter měl objem 4 l a byl vyroben z polykarbonátu. Polyethylentereftalátová diafragma byla umístěna v přepážce oddělující katodový a anodový prostor. Elektrody byly vyrobeny z titanu, potaženého platinou. Elektrický zdroj dodával stejnosměrné konstantní napětí do 5 kV a proudy do 300 mA. Dále byl použit spektrometr Jobin Yvon TRIAX 550 s CCD detektorem. Optickou emisní spektroskopií byla proměřena přehledová spektra v rozsahu 200 až 900 nm, dále molekulová spektra OH a čárové spektrum Hß. Všechna spektra byla snímána pro obě polarity výboje, tj. u katody i u anody. Z naměřených spekter byly následně počítány základní diagnostické parametry plazmatu, což jsou rotační a elektronová teplota a hustota elektronů. Další část experimentu sestávala z měření s ICCD kamerou iStar 734. Byly použity dva typy reaktorů, první čtyřlitrový byl stejný jako reaktor použitý pro měření optické emisní spektroskopie. Druhý, taktéž vyrobený z polykarbonátu, měl objem vodivého roztoku 110 ml a byly v něm použity elektrody vyrobené z nerez oceli. V obou reaktorech byla použita keramická diafragma (Shapal-MTM). Diafragmy měly různé tloušťky a průměry dírek. ICCD kamerou byl snímán průběh generace bublin a zapalování výboje v závislosti na použitých vodivostech a rozměrech diafragmy vždy v obou elektrodových prostorech.

Národní úložiště šedé literatury : Nalezeno 30 záznamů.   předchozí11 - 20další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.