National Repository of Grey Literature 8 records found  Search took 0.01 seconds. 
Dissolved and gaseous nitrogen losses in forests controlled by soil nutrient stoichiometry
Oulehle, Filip ; Chuman, T. ; Hruška, Jakub ; Krám, Pavel ; Navrátil, Tomáš ; Tesař, Miroslav ; Ač, Alexander ; Urban, Otmar
This study investigates the consequences of chronic nitrogen deposition in forests, including its effects on soil and surface water quality, and greenhouse gas emissions. To predict these effects, the authors explore the controls over dissolved and gaseous nitrogen fluxes in temperate forests. Their findings indicate that stream leaching losses of dissolved nitrogen correspond with the nutrient stoichiometry\nof the forest floor, with stream N losses increasing as ecosystems progress towards phosphorus limitation. Soil nitrogen storage increases with oxalate extractable iron and aluminium content. The authors estimate soil gaseous losses based on 15 N stocks, which averaged 2.5±2.2 kg N ha-1 year-1 , comprising 20±14% of total nitrogen deposition. They also extrapolate the current gaseous nitrogen loss flux from forests globally to be 8.9 Tg N year-1 , which represents 39% of current nitrogen deposition to forests worldwide.
Refinement of the snow cover distribution
Procházka, J. ; Šustková, V. ; Tesař, Miroslav
The study evaluates the importance of automatic snow monitoring stations (ASMS) operated by different subjects in the chosen sub-catchments in the Šumava Mts. in the framework of water reservoir Orlík basin. The attention is paid to the snow cover monitoring as an important water balance component of a basin especially in the mountainous regions. Sub-catchments of the Vltava and Otava rivers represent head water regions of the rainfall windward part of the boarder mountains while Volyňka and Blanice sub-catchments represent leeward inland part of mountains. The importance of ASMS was proved especially in the highest and remote localities of the Šumava Mts. where the basic meteorological stations used for common climatological and hydrological evaluations are missing. The description of the snow cover and its characteristics is possible to improve significantly owing to recent sources and methods. The continual record of the snow cover depth gives for the higher regions of the Šumava Mts. new findings and operational data both for standard climatological evaluations and for further applications used in the framework various institutions, e.g. Czech Hydrometeorological Institute, State Enterprises, etc.
Temperature regime of forest soils
Dohnal, M. ; Votrubová, J. ; Mazúchová, R. ; Blunár, P. ; Tesař, Miroslav
Contribution deals with the monitoring of the temperature regime of forest soils and the soil heat flux at small mountainous basins Liz in the Šumava Mts. and Uhlířská in the Jizera Mts. Soil temperatures are measured with the help of soil moisture meters (Pt100 at Liz basin and CS107 at Uhlířská basin), the soil heat flux is measured with the use of the sensor Hukseflux HFP01. Measured results were statistically evaluated, the analysis of the consistence of the measurement was done and cumulative soil heat fluxes were calculated for the individual hydrological years.
Where does the water in Plešné lake come from?
Kopáček, Jiří ; Porcal, Petr
Application of three approaches to estimate the contribution of groundwater in the water balance of Plešné Lake.
Where and how much water do trees transport? Modelling the impact of spruce and beech stands on soil water fluxes during extreme climatic conditions
Zelíková, Nikol ; Šípek, Václav
Soil moisture links processes that influence the entire hydrological cycle and thus the availability of water resources. One important factor influencing these processes is the presence of vegetation. Research on the interactions between vegetation, its management and the processes affecting soil water fluxes is of particular importance in times of ongoing climate change and land cover changes. However, the complexity of these interactions, further influenced by differences between plant species, makes this research more difficult. Land cover change is also taking place in Czechia, specifically in the replacement of spruce monocultures by beech. Therefore, this study investigates the influence of two types of forest stands, spruce (Picea abies) and beech (Fagus sylvatica), on the soil water regime in the experimental Liz catchment in Bohemian Forest, Czechia. This was performed by (1) evaluating differences in soil moisture based on twenty years of measured data and (2) obtaining the two components of the soil water balance (transpiration and percolation) at two plots (beech and spruce) using a soil water balance model. Analysis of the long-term soil moisture data show slightly lower soil moisture values under the beech stands, which disappear when comparing the annual mean values. Differences are evident when evaluating average soil moisture data with depth, where the topmost layer of the soil profile at the spruce site has on average 6% higher soil water content than beech. At the start of the growing season the soil moisture was initially drier under spruce, due to its earlier start of transpiration. This difference was reduced over the season by the intensive transpiration of beech. The outputs of the balance model indicated a higher rate of actual evapotranspiration of beech and a higher rate of percolation of spruce every year. This effect was more pronounced over the dry years, whereas in years with sufficient rainfall the differences were minimal. Thus, the replacement of spruce trees by beech trees may affect the rate of groundwater recharge.
Time variabilty of soil hydraulic properties and their impact on soil moisture estimation
Šípek, Václav ; Vlček, Lukáš ; Tesař, Miroslav ; Zelíková, Nikol ; Hnilica, Jan
The study was focused on the temporal variability of saturated hydraulic conductivity in an experimental plot covered by spruce forest and investigated benefits of its incorporation into soil water balance model. The results showed that the higher saturated hydraulic conductivity (33.6-44.8 cm hr-1) was observed in summer period compared to lower values (13.2-22.3 cm hr-1) in the winter period. The use of seasonally variabile saturated hydraulic conductivity improved the efficiency of soil water balance model in terms of lower root mean square error between observed and simulated volumetric soil water content by 33.2 %. The Nash-Sutcliffe coefficient rose from 0.34 to 0.68.
Runoff from a mainly peat bog basin
Vlček, Lukáš ; Falátková, Kristýna
This research focuses on the basin's hydrological regime, where peatlands make up approximately half of the area. Hydrological processes in the peat bog and the surrounding forest were evaluated using the HBV model. The results show that the peatlands significantly increase the water regime fluctuation of local streams. Moreover, water balance shows a lower cooling effect of tree-less peat bogs than forests on organo-mineral soils. Except for a positive ecological aspect, peatland restoration can have a negative hydrological impact on the surrounding landscape and local streams.
Hydrology of small basins 2023
Hnilicová, Soňa ; Tesař, Miroslav
The book is a collection of scientific contributions to the Conference "Hydrology of small basins". The conference topics were: 1. Changes in the regime of water resources in small basins; 2. Complex monitoring a and water storage balance in small basins; 3. Hydrological extremes (flash floods, drought); 4. Effect of land use and land cover on water balance; 5. Hydrophobicity and transportation processes in soil; 6. Hydrological modelling und uncertainties; 7. Biogeochemical fluxes in a small watershed and eutrophication of surface waters; 8. Mountainous experimental small basins (deposited precipitation, snow regime, …); 9. New methods, techniques and instrumentation in hydrology and hydroecology.\n

Interested in being notified about new results for this query?
Subscribe to the RSS feed.