Národní úložiště šedé literatury Nalezeno 3 záznamů.  Hledání trvalo 0.00 vteřin. 
Damage mechanisms in multiaxial fatigue
Poczklán, Ladislav ; Kunz,, Ludvik (oponent) ; Spätig, Philippe (oponent) ; Kruml, Tomáš (vedoucí práce)
The manuscript is focused on multiaxial fatigue of austenitic stainless steel 316L. The material was cyclically tested in tension/compression and pure torsion as well as in two multiaxial modes formed by their in-phase and 90° out-of-phase combination. All tests were performed in total strain-controlled mode at ambient temperature. Results of fatigue tests suggest that cycling in tension/compression mode causes the fastest crack growth rate and the shortest fatigue life. Torsional mode, on the contrary, led to the slowest propagation of fatigue cracks and the longest fatigue lives. Both multiaxial modes proved to be comparably damaging. Two aspects of microstructural changes were studied in detail: developed dislocation structures and strain-induced martensitic transformation. Electron microscopy was utilized for analyzing both features. In in-phase and both uniaxial modes similar dislocation structures distinguished from those observed in out-of-phase mode were formed which results in the distinct mechanical response observed in the case of out-of-phase loading path. The stability of austenite during cycling was dependent on the loading mode and strain amplitude. The distribution of induced martensite in torsional and out-of-phase modes was strongly heterogeneous. Measuring its content on the outer surface with the Feritscope may give misleading results in some cases. The lowest amount of martensite was observed in tension/compression mode. The endurance against fatigue fracture as well as the tilt angle of the fatigue crack path were predicted using models based on the critical plane approach. The number of cycles to failure was predicted the most precisely by the criterion proposed by Fatemi and Socie. The Smith-Watson-Topper yielded the best predictions of the fatigue crack orientation. The analysis proposed by Polák and the method using the plastic part of the J-integral were applied to investigate the crack growth kinetics. The later approach provided a versatile description of the crack growth rate under all loading paths except out-of-phase mode.
Early Stages of Fatigue Damage of Steels for Fusion Energetics
Kuběna, Ivo ; Spätig, Philippe (oponent) ; Lukáš, Petr (oponent) ; Kruml, Tomáš (vedoucí práce)
The main aim of the thesis is to explain fatigue behaviour of the ODS Eurofer steel, 14Cr ODS ferritic steel produced in the CEA (Commissariat a l’énergie atomique, Saclay, France) and 14Cr ODS ferritic steel produced in the EPFL (École Polytechnique Fédérale de Laussane, Switzerland). The results are compared with non–ODS variant of Eurofer steel, if possible. This work is part of a wide collaboration coordinated by the EFDA (European Fusion Development Agreement) on development of structural materials for future fusion reactors. The following experiments were carried out: • Standard fatigue experiments were performed at room temperature, at 650 and at 750 . Cyclic hardening/softening curves, cyclic deformation stress–strain curves, Coffin–Manson curves and Wöhler curves were measured. Detailed analysis of hysteresis loops was performed. • The microstructure of the as–received state was studied by TEM and compared with the microstructure after fatigue loading in order to reveal microstructural changes due to fatigue loading. • Surface roughening due to cyclic plastic localisation was observed. Crack initiation sites were detected and the mechanism of crack initiation was analysed. • Kinetics of small fatigue crack growth was measured. It was found that fine oxide dispersion strengthens studied materials significantly, reduces cyclic softening and stabilises the microstructure in the whole range of testing temperatures. The maximum application temperature is increased. Significant differences in fatigue life of the ODS steels were found and explained by differences in crack initiation mechanisms and small fatigue crack growth rate.
Early Stages of Fatigue Damage of Steels for Fusion Energetics
Kuběna, Ivo ; Spätig, Philippe (oponent) ; Lukáš, Petr (oponent) ; Kruml, Tomáš (vedoucí práce)
The main aim of the thesis is to explain fatigue behaviour of the ODS Eurofer steel, 14Cr ODS ferritic steel produced in the CEA (Commissariat a l’énergie atomique, Saclay, France) and 14Cr ODS ferritic steel produced in the EPFL (École Polytechnique Fédérale de Laussane, Switzerland). The results are compared with non–ODS variant of Eurofer steel, if possible. This work is part of a wide collaboration coordinated by the EFDA (European Fusion Development Agreement) on development of structural materials for future fusion reactors. The following experiments were carried out: • Standard fatigue experiments were performed at room temperature, at 650 and at 750 . Cyclic hardening/softening curves, cyclic deformation stress–strain curves, Coffin–Manson curves and Wöhler curves were measured. Detailed analysis of hysteresis loops was performed. • The microstructure of the as–received state was studied by TEM and compared with the microstructure after fatigue loading in order to reveal microstructural changes due to fatigue loading. • Surface roughening due to cyclic plastic localisation was observed. Crack initiation sites were detected and the mechanism of crack initiation was analysed. • Kinetics of small fatigue crack growth was measured. It was found that fine oxide dispersion strengthens studied materials significantly, reduces cyclic softening and stabilises the microstructure in the whole range of testing temperatures. The maximum application temperature is increased. Significant differences in fatigue life of the ODS steels were found and explained by differences in crack initiation mechanisms and small fatigue crack growth rate.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.