Národní úložiště šedé literatury Nalezeno 70 záznamů.  začátekpředchozí56 - 65další  přejít na záznam: Hledání trvalo 0.00 vteřin. 
Some Other Gratings: Benchmarks for Large-Area E-Beam Nanopatterning
Meluzín, Petr ; Horáček, Miroslav ; Urbánek, Michal ; Bok, Jan ; Krátký, Stanislav ; Matějka, Milan ; Chlumská, Jana ; Kolařík, Vladimír
E-beam lithography is a flexible technology for diffraction gratings origination. Nevertheless, requirements of the high optical quality of large area diffractive structures imply various severe challenges to e-beam delineating processes. This paper summarizes the e-beam process parameters that influence the quality of large area grating structures. Next, we propose some new methods to prepare diffraction gratings that were found to be useful for testing and benchmarking purposes. Those methods include single line gratings, labyrinth structures, fractional structures, tiling patterns, quasi regular filling structures and forked line structures. Various samples were prepared with the standard and newly developed e-beam patterning processes using both e-beam writers available: one with the Gaussian beam at 100 keV and another one with the shaped beam at 15 keV. Some of the results are presented further in this paper, their variants and parameters are discussed as well as their usefulness as benchmarking e-beam patterns for large area optical structures, elements and devices.
Performance of YAG:Ce Scintillators for Low-Energy Electron Detectors in S(T)EM
Lalinský, Ondřej ; Bok, Jan ; Schauer, Petr ; Frank, Luděk
Cerium activated single crystals of yttrium aluminium garnet (YAG:Ce) Y3-xCexAl5O12 are widely used as scintillators in electron detectors for S(T)EM. Nowadays, it is sometimes necessary to detect low-energy electrons without post-acceleration. In such cases, extremely sensitive detectors are required that are able to detect even electrons with energies of only hundreds of eV while avoiding charging of the scintillator surface. However, commonly used scintillators strongly lose their light yield with the decrease of the incident electron energy. Moreover, a thinner conductive layer on the scintillator surface has to be used to allow low-energy electrons to pass through. Possible charging of the surface negatively affects its cathodoluminescence (CL) light yield. The low-energy electron excitation takes place closer to the scintillator surface where damage can be expected owing to its preparation, which also reduces the CL light yield. The aim was to study the influence of the scintillator and its conductive layer on the low-energy electron detection efficiency.
Innovation possibilities of scintillation electron detector for SEM
Schauer, Petr ; Bok, Jan
To evaluate performance of a scintillation detection system for SEM, it is necessary to consider many scintillator parameters. Various attributes of the scintillator for the SEM electron detector are listed in. The very important parameters are those affecting the detective quantum efficiency (DQE) which is primarily a measure of image noise. Not a less important indicator of image quality is the modulation transfer function (MTF) which describes the ability to show fine image details. Therefore, using a scanning imaging system, the detector bandwidth, which is given especially by the scintillator decay time, is the key to the good MTF. Currently, the YAG:Ce single crystal scintillator (introduced already in 1978 having somewhat limiting decay characteristic is the most frequently used scintillator in the SEM. The aim of this paper is to outline possibilities of scintillator innovation to get the improved MTF and DQE.
Measurement of current density distribution in shaped e-beam writers
Horáček, Miroslav ; Bok, Jan ; Kolařík, Vladimír ; Urbánek, Michal ; Matějka, Milan ; Krátký, Stanislav
The ZrO W(100) Schottky cathode is used in our e-beam writing system working with a rectangular-shaped electron beam. The homogeneous angular current density distribution is crucial for quality of exposures of the shaped beam lithography systems. Two basic types of the angular emission distribution can be observed in dependence on the microscopic final end form shape of the emitter tip, with bright centre and more common dark centre. The stable operation of the cathode thus stable end form shape requires a delicate balance of parameters inside the gun which however can slightly change during cathode life time. This implies the necessity of analysing and periodical monitoring the current density distribution in e-beam. Four methods enabling this measurement are presented.
E-beam pattern generator BS600 and technology zoom
Kolařík, Vladimír ; Horáček, Miroslav ; Matějka, František ; Matějka, Milan ; Urbánek, Michal ; Krátký, Stanislav ; Král, Stanislav ; Bok, Jan
This contribution deals with an electron beam pattern generator (ELG) working with a rectangular shape variable size electron beam originally developed at Institute of Scientific Instruments (ISI), later on commercialized as a BS600 series by former company Tesla, and recently upgraded by ISI cooperating with several partners. The key issue of this paper is a recently developed exposure mode which is called Technology Zoom (TZ mode) since its original concept until the recent progress. This ELG operating in the TZ mode provides three main advantages when compared to the standard exposure mode: higher exposure speed due to increased beam current density; finer stamp size adjustment and sharper stamp shape due to the stronger size reduction of the shaping aperture. Further, we discussed also some drawbacks and practical issues of the TZ mode. And finally, we summarize some results on real exposure examples. The new exposure mode (together with other recent upgrades) makes the BS600 pattern generator very useful for the nanotechnology patterning tasks and challenges.
Shaped E-beam nanopatterning with proximity effect correction
Urbánek, Michal ; Kolařík, Vladimír ; Matějka, Milan ; Matějka, František ; Bok, Jan ; Mikšík, P. ; Vašina, J.
Electron beam writer is a tool for writing patterns into a sensitive material (resist) in a high resolution. During the patterning, areas adjacent to the beam incidence point are exposed due to electron scattering effects in solid state (resist and the substrate). Consequently, this phenomenon, also called proximity effect, causes that the exposed pattern can be broader in comparison to the designed. In this contribution we present a software for proximity effect simulation and a software for proximity effect correction (PEC). The software is based on the model using the density of absorbed energy in resist layer and the model of resist development process. A simulation of proximity effect was carried out on binary lithography patterns, and consequently testing patterns were exposed with a corrected dose. As pattern generation, we used the e-beam writer TESLA BS 600 working with fixed energy 15keV and variable size rectangular shaped beam. The simulations of binary testing patterns and exposed patterns without PEC were compared. Finally, we compared the testing structures with PEC and without PEC, and we showed that the PEC tool works reliably for the e-beam writer BS 600.
Calibration specimens for microscopy
Kolařík, Vladimír ; Matějka, Milan ; Matějka, František ; Krátký, Stanislav ; Urbánek, Michal ; Horáček, Miroslav ; Král, Stanislav ; Bok, Jan
Recent developments in nanotechnologies raised new issues in microscopy with nanometer and sub nanometer resolution. Together with the imaging techniques, new approaches in the metrology field are required both in the direct metrology issues and in the area of calibration of the imaging tools (microscopes). Scanning electron microscopy needs the calibration specimens for adjusting the size of the view field (correct magnification) and the shape of that field (correction of deflection field distortions). Calibration specimens have been prepared using different technologies; among them the e–beam patterning and the e–beam lithography have been proved to be appropriate and flexible tool for that task. In the past, we have reported several times our achievements in this field (e.g. [1]). Nevertheless, recent advances of the patterning tool (BS600), mainly the development of the technology zoomed exposure mode [2] and the installation of the magnetic field active cancellation system [3], pushed remarkably the technology necessary for further advances in this area. Within this contribution some theoretical, technology and practical aspects are discussed; achieved results are presented.
Analysis of electron current instability in E-beam writer
Bok, Jan ; Horáček, Miroslav ; Král, Stanislav ; Kolařík, Vladimír ; Matějka, František
The electron beam writer Tesla BS600 works with a thermal-field electron emitter, fixed electron energy of 15 keV and a rectangular shaped variable-size electron beam. The size of the shaped beam (stamp) can be set from 50 to 6300 nm in standard mode and from 16 to 2100 nm in high-resolution mode. The basic increment of the stamp size is 50 nm, resp. 16 nm. Electron current density inhomogeneity and long-term instability in stamps can have negative impact on the exposure quality. Therefore, we focused on a study of the current time instability. The current density in variously sized stamps was measured by a picoammeter and a PIN diode video channel as a function of time. We analyzed short-term and long-term current instabilities using filtering techniques, as well as the Fourier analysis. Based on the results, we could be able to find reasons of the current instabilities and to propose improvements to achieve higher exposure quality.
Current state and prospects of scintillation materials for detectors in SEM
Schauer, Petr ; Bok, Jan
The two principal quantities are important for assessing the quality of each imaging system. Firstly, it is the detective quantum efficiency (DQE), which is primarily a measure of image noise. As the DQE is determined by signal to noise ratio (SNR), the efficient and noise-free components are the key to the high DQE. Second, not less important indicator of image quality is also the modulation transfer function (MTF). MTF describes the ability of adjacent pixels to change from black to white in response to patterns of varying spatial frequency, and hence it determines the actual capability to show fine detail, whether with full or reduced contrast. Using a scanning imaging system the fast components are the key to the good MTF. In a scintillation electron detector of scanning electron microscope (SEM) the scintillator is the most crucial component, because it significantly influences both the DQE and MTF. The aim of this study is to assess the scintillation materials suitable for SEM detectors characterized by the both high efficiency and fast decay characteristic.
What is the buzz about the TZ mode
Kolařík, Vladimír ; Matějka, František ; Matějka, Milan ; Horáček, Miroslav ; Urbánek, Michal ; Bok, Jan ; Krátký, Stanislav ; Král, Stanislav ; Mika, Filip
This contribution deals with an e-beam pattern generator BS 600 that works with a variable rectangular spot of electrons (stamp). The TZ stands for the ‘technology zoom’; its meaning is a reduction of the spot size by a factor of 3. Original description of the TZ exposure mode can be found in (1), [2] and [3]; further aspects concerning the exposure system and its electron source were described in [4] and [5]; technology and related topics are discussed in [6], [7], [8] and [9]; overview of application areas is in [10], [11] and [12]; and finally, very recent results are summarized in [13], [14] and [15].

Národní úložiště šedé literatury : Nalezeno 70 záznamů.   začátekpředchozí56 - 65další  přejít na záznam:
Viz též: podobná jména autorů
1 Bok, J.
8 Bok, Jan
2 Bok, Jaromír
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.