National Repository of Grey Literature 36 records found  beginprevious26 - 35next  jump to record: Search took 0.01 seconds. 
Biocompatibility of diamond-based platforms with neuronal cells.
Gottfriedová, Kristýna ; Benson, Veronika (advisor) ; Hubálek Kalbáčová, Marie (referee)
Existuje mnoho typů platforem, které jako povrch, bezprostředně interagující s buňkami, využívají diamant. Hlavní rozdíly jsou v typu použitých diamantů. Jedná se o nanodiamanty a ultrananokrystalické diamanty, které mohou být různě strukturované a také dopované o atomy boru. Ačkoli by pravděpodobně bylo hezké, kdyby na platformách nemusela být žádná povrchová úprava. Podle výsledků výzkumů to nevypadá jako lehký úkol, výzkum v tomto směru probíhá, ale zatím bez významných úspěchů. Nejlepších výsledků se při kultivaci buněk na platformách dosahuje, když je povrch potažen alespoň částečkami molekul extracelulární matrix. Jako o trošku méně účinné se jeví využití molekul, které na základě elektrostatických sil navodí adhezi buňky. Jedná se například o molekulu lysinu. Dalším krokem ve výzkumu je ověření, zda povrchy, které se v první fázi zkoumání jevily jako biokompatibilní, budou i po dopování stále optimální pro růst buněk. Z níže uvedených výzkumů zatím vyplývá, že například dopování nanodiamantu borem nemá významný vliv na prosperitu buněk. Klíčová slova nanodiamant, nervová buňka, biokompatibilita, mikroelektrodové pole
Studium interakce buněk s biomimetickým materiálem a jeho využití v biomedicíně
Sauerová, Pavla ; Hubálek Kalbáčová, Marie (advisor) ; Vandrovcová, Marta (referee) ; Jendelová, Pavla (referee)
Biomaterials are considered as very promising tools for regenerative medicine. They have compensatory or supporting function in organism and they are often developed to support specific conventional medical procedures. So-called biomimetic materials are developed to imitate natural environment of organism and to induce positive innate responses of organism. An essential part of biomaterial development is in vitro biological evaluation, which characterizes (often for the first time) the potential of developed material for its clinical application. This Ph.D. thesis deals with in vitro biological evaluation of three different biomimetic materials. In all three cases, the comprehensive evaluation was an integral part of the material development and optimization processes. Each material was in vitro characterised at the level of cell-material interactions with respect to its intended specific application.. In the first part, cell response to potential drug delivery system based on colloidal complexes of cationic surfactants with hyaluronic acid (HyA) was characterized. HyA protection ability and its limits were described; also the role of fetal bovine serum (FBS) in cell response to the stress stimuli was confirmed. Results considered surfactant-HyA complexes as promising system for drug delivery. In...
Studies of properties of viral capsid proteins and development of recombinant vaccines and diagnostic components based on artificial viral structures
Fraiberk, Martin ; Forstová, Jitka (advisor) ; Hubálek Kalbáčová, Marie (referee) ; Hejnar, Jiří (referee)
The aim of this study was to develop a system for easy production of different veterinary chimeric vaccines based on stable mouse polyomavirus (MPyV) structures. The system is designed for antigens that are problematic in production or stability. First, universal vectors for baculovirus-directed production of chimeric MPyV VLPs or pentamers based on the major capsid protein VP1 were designed to be exploited as vaccines against other pathogens. The different strategies used in this study are based on: A) exposure of selected immunogenic epitopes on the surface of MPyV VLPs by inserting them into a surface loop of the VP1 protein, B) insertion of foreign protein molecules inside the VLPs, or C) fusion of a foreign protein or its part with the C-terminus of VP1 protein, thus forming giant pentamers of a chimeric protein. Candidate vaccine antigens against porcine circovirus 2 (PCV2), the causative agent of porcine circovirus 2 systemic diseases (PCV2-SD) which causes significant economic losses in swine breeding, were prepared using the constructed vectors. All candidate vaccines induced the production of antibodies against the capsid protein of PCV2 after immunization of mice. The candidate vaccine Var C based on fusion of MPyV and PCV2 capsid proteins, is able to induce production of antibodies with...
Adhesion, growth and differentiation of osteoblasts and mesenchymal stromal cells on biocompatible nanomaterial surfaces
Brož, Antonín ; Hubálek Kalbáčová, Marie (advisor) ; Černý, Jan (referee) ; Kylián, Ondřej (referee)
The thesis is based on articles describing the fundamental research of carbon based nanomaterials for their possible utilization in biomedicine. The aim of this thesis was to describe the way how human osteoblasts (SAOS-2 cell line) and primary human mesenchymal stem cells (hMSC) adhere, grow and behave on surfaces made of several carbon allotropes - nanocrystalline diamond (NCD), single walled carbon nanotubes (SWCNTs) films and graphene. The utilization of carbon as the basic material promised good biocompatibility and possibility of useful surface modifications. The NCD had modified surface nanotopography (nanoroughness and nanostructuring prepared by dry ion etching). All the materials had modified surface atomic termination with oxygen and hydrogen which changes the surface electrical conductivity, surface charge and wettability. It was hypothesized that the surface termination can also influence the cell adhesion and growth. It turned out that all the studied materials were suitable as substrates for cultivation of mentioned cell types. Various nanoroughnesses of NCD surface had different effect on the cell adhesion and cell metabolic activity. Nanostructuring of the NCD influenced the formation of focal adhesions. The surface terminations of NCD and the other studied nanomaterials in...
Effects of silicon nanoparticles on human cells
Bělinová, Tereza ; Hubálek Kalbáčová, Marie (advisor) ; Janoušková, Olga (referee)
In past years, nanoparticles have been studied as possible platform to be used in biomedicine. In order to establish the application potential of nanoparticles, its impact to biological systems have to be determined. Herein, several silicon-based nanoparticles of different origins were studied in respect of their influence on metabolic activity of human cells, namely osteoblast cell line SAOS-2 and monocytic cell line THP-1. The obtained results proposed that the impact of nanoparticles on cells is highly dependent on cultivation conditions in which nanoparticles are administered to cells. Furthermore, microscopy experiments were implemented in order to localize the particles within cells, where conventional microscopy limitations are evident. Key words: silicon nanoparticles, quantum dots, cell-particle interaction, cytotoxicity
Demands and needs of persons performing foster care
KALBÁČOVÁ, Marie
The presented thesis focuses on demands and needs of persons participating in foster care. It is divided into a theoretical and a practical part. In the introduction of the theoretical part, the historical importance of a family having its positive influence on child´s development is explained. The thesis draws attention to protection of rights of children both in international and national documents. Legal regulations relating to substitute family care in the Czech Republic, having foster care in focus, are explained. The following part maps needs of children committed to foster care and needs of foster parents in connection with managing challenging situations they go through with such children. The last part summarizes rights and obligations of foster parents, the importance of accompanying services for foster families, and creates a comprehensive overview regarding possibilities of using social benefits for material security of a child and a foster parent. The practical part identifies differences in foster care performed by a person registered and a person caring. Its aim is to map the most common educational needs for persons registered and persons caring, to evaluate the importance of the assisting organization being attributed by persons registered and persons caring, and to ascertain material requirements of persons registered and persons caring. The output is to identify legislative deficiencies relating to drawing on material and financial securities. Three research questions have been set within the thesis, which comply with thesis targets. Qualitative research was applied. Semi-structured interviews with twelve communication partners were used as data collection basis. The results were processed by a specific qualitative method. Six clusters were made based on received data, which were evaluated as common and referenced in interviews with more communication partners. The research ascertained differences in needs important for a registered foster parent and a caring foster parent. The persons registered, like a crisis institute, must react quickly on child´s demands during his/her adopting. These foster parents place higher demand on education and an assisting organization. Their connection to a key person in the organization is much stronger. Persons caring vary their needs relating to obligatory education and an assisting organization depending on personal experience with raising children and their actual problems. A difference in the way and contents of education was also identified. Differences in financial security of persons registered and persons caring were detected including legislative barriers that prevent especially persons caring from drawing on legal claims. The thesis outputs may by applied as a basis for further research work in this area. The thesis may be used as a supporting material for assisting organizations.
The effect of carbon nanostructures on human cell behavior and the role of fetal bovine serum in cell adhesion
Verdánová, Martina ; Hubálek Kalbáčová, Marie (advisor) ; Brábek, Jan (referee) ; Smetana, Karel (referee)
Graphene (G) and nanocrystalline diamond (NCD) are carbon allotropes and promising nanomaterials with an excellent combination of their properties, such as high mechanical strength, electrical and thermal conductivity, possibility of functionalization and very high surface area to volume ratio. For these reasons, G and NCD are employed next to electronics in biomedical applications, including implant coating, drug and gene delivery and biosensing. For a fundamental characterization of cell behavior on G and NCD, we studied osteoblast adhesion and proliferation on differently treated G and NCD. Generally, both G and NCD exhibited better properties for osteoblast cultivation than control tissue culture polystyrene. Better cell adhesion but lower cell proliferation were observed on NCD compared to G. The most surprising finding was that hydrophobic G with nanowrinkled topography enhanced cell proliferation extensively, in comparison to hydrophilic and flat G and both NCDs (hydrophobic and hydrophilic) with slightly higher roughness. Promoted cell proliferation enables faster cell colonization of G and NCD substrates, meaning faster new tissue formation which is beneficial in biomedical applications. Furthermore, it was shown that osteoblast adhesion was promoted in the initial absence of fetal bovine...
The biocompatibility and potential cytotoxicity of materials for joint replacement manufacturing and coating
Kopová, Ivana ; Bačáková, Lucie (advisor) ; Hubálek Kalbáčová, Marie (referee) ; Jendelová, Pavla (referee)
Currently used prostheses for total joint replacement still have numerous disadvantages: extreme stiffness or elastic modulus of the bulk metallic material; insufficient integration of the implant into the host bone; and a high wear and corrosion rate, which causes an accumulation of mostly metallic or polymeric wear debris. Because of these reasons, many patients experience increasing local pain, swelling, allergic reactions, and inflammation resulting in bone loss and the aseptic loosening of the implant leading to the need for painful and expensive revision surgery. To address the mechanical issues of commonly used orthopaedic alloys, this thesis presents the development of the new β-type titanium alloy Ti-35Nb-7Zr-6Ta-2Fe-0.5Si with a relatively low elastic modulus (up to 85 GPa), increased tensile strength (880 MPa), and enhanced biocompatibility and osteoconductivity. Considering the generally low osteoinductivity of metallic implants, various surface modifications and coatings have been developed to improve the cell-material interaction, e.g. carbon-based coatings. Among these coatings, C60 fullerene layers have emerged as a great candidate for coating orthopaedic implants due to their therapeutic potential in arthritis. The potential cytotoxicity and DNA damage response of fullerenes have...
Application on nanoparticles in bio-medicine.
Bělinová, Tereza ; Hubálek Kalbáčová, Marie (advisor) ; Beranová, Jana (referee)
During last few years nanoparticles of different origin have been used in biomedicine. Their interactions with cells are however a big point of concern and so further research is needed to be done regarding their properties, internalization into cells and their fate within the cell. All of this is needed for correct selection of proper nanoparticles for bioimaging and also for future use in human medicine. One of the main parts of research is deep understanding of interactions of nanodiamonds and silicon based nanoparticles with cells, because of their highly unique properties (autofluorescence), biocompatibility and in case of silicon nanoparticles also their degradability.
Nanotechnology in the intensive care: Intravascular biocompatibility of carbon nanomaterials-effect of carbon nanotubes on blood platelets
Šemberová, Jana ; Straňák, Zbyněk (advisor) ; Dyr, Jan (referee) ; Hubálek Kalbáčová, Marie (referee)
Nanotechnology in the intensive care: Intravascular biocompatibility of carbon nanomaterials - effect of carbon nanotubes on blood platelets. EFFECT OF CARBON NANOTUBES ON BLOOD PLATELETS Carbon nanotubes (CNTs) are among the principal materials currently used in biomedical nanotechnologies. CNTs possess superior mechanical and chemical characteristics including enormous tensile strength, elasticity and conductivity. As a result they are very popular and attractive for use in various biomedical applications. Many of these applications may lead ultimately to contact of carbon nanomaterials and blood. Furthermore, CNTs may also be present intravascularly as a result of environmental or occupational exposure. Therefore, the investigation of the intravascular biocompatibility of CNTs is a critical safety issue. We studied the effects of structurally different purified CNT materials from different manufacturers on human platelets and compared their effects to amorphous carbon black nanoparticles (ACB), fullerene C60, fullerenol C60(OH)24 and NIST standard polystyrene nanobeads (PNBs). Using light transmission aggregometry of human platelet rich plasma, we found that various CNTs induce PLT aggregation and this occurs in a concentration dependent manner. In contrast to CNTs, ball-like shaped fullerene...

National Repository of Grey Literature : 36 records found   beginprevious26 - 35next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.