National Repository of Grey Literature 34 records found  previous11 - 20nextend  jump to record: Search took 0.00 seconds. 
Elastic registration of biomedical images on CUDA-Supported graphics procesor units
Michálek, Jan ; Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie
Elastic registration is a task of finding the matching of two images, using geometric and elastic transformations, so that objects in images have the same size, position and orientation. We apply elastic registration in the framework of volume reconstruction, where an object acquired from parallel physical sections is composed and mutual positions of the sections including deformations caused by their cutting have to be found. The method lies in optimizing a functional consisting of two parts: first, discrete total variation as a measure of roughness and, second, L1 norm as a measure of dissimilarity of images. As a parallelizable optimization strategy we apply a potential-based equivalent transformation of a (max,+)-labelling problem. CUDA-based implementation of the described elastic registration algorithm is reasonably fast, requires seconds to minutes of calculations, provides good results and, thus, can be used for practical tasks dealing with alignment of biomedical images
Application of morphology filters to compensation of lateral illumination inhomogeneities in confocal microscopy images
Michálek, Jan ; Čapek, Martin ; Mao, X. W. ; Kubínová, Lucie
Due to multiple distortion effects, confocal laser scanning microscopy (CLSM) images of even homogeneous specimen regions suffer from irregular brightness variations. In this paper, a fast correction method based on estimating a spatially variable illumination gain, and multiplying acquired CLSM images by the inverse of the estimated gain, is presented. The method does not require any special calibration (reference) images since the gain estimate is extracted from the CLSM image being corrected itself. The proposed approach exploits two types of morphological filters: the median filter and a morphological operator called the upper Lipschitz cover
Multi-fotonová exitační mikroskopie
Chernyavskiy, Oleksandr ; Kubínová, Lucie
Multiphoton excitation microscopy (MPM), being some time ago rather exotic than an easy-to-handle tool, becomes now more widely used due to advances in laser technique. This promising, yet expensive technique provides such advantages, as deeper penetration depth, lower photodamage, especially important in live cells imaging for extended periods of time
Ohodnocení chyby objemové rekonstrukce biologických vzorků z konfokálních obrazů
Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie ; Smrčka, P. ; Hána, K.
We performed both volume reconstructions using images captured by the USB microscope and images captured by the confocal microscope. We manually marked important corresponding structures in both reconstructed data sets, and computed distances between corresponding structures, assuming that structures in the reconstruction from USB microscope data are without deformations. According to our expectations, the main errors of high-resolution volume reconstruction (from confocal data) are in the direction of physical cutting (vary in units of millimeters) and in the direction perpendicular to cutting due to off-cut (vary in tenths of millimeters)
Přístupy k visualizaci obrazů 3D struktur získaných konfokálním mikroskopem
Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie ; Hána, K. ; Smrčka, P.
Laser scanning confocal microscopes are capable to focus a laser beam into a layer of an investigated biological specimen, and by the gradual scanning of this layer they acquire an optical section. By consecutive scanning of all preset layers of the specimen we obtain a stack of optical sections, i.e. a 3D digital representation of the specimen. In the presented study we focus on volume reconstruction of large biological tissues, i.e. tissues greater than field of view and/or thicker than maximal depth of scanning of a confocal microscope. As a result of volume reconstruction we obtain a high resolution 3D image of the biological specimen. 3D visualization is offered either by our Rapid3D software package suited for three-dimensional reconstruction and visualization of biomedical images, or Ellipse modular software package devoted to biological image processing (created by ViDiTo company, Slovakia)
Prostředky pro vizualizaci obrazů velkých třídimenzionálních objektů v biologii
Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie ; Smrčka, P. ; Hána, K.
Three-dimensional images of biological objects or structures recorded by modern acquisition tools like a confocal laser scanning microscope are visualized for their evaluation, analysis and measurement. We report about possibilities for three-dimensional visualization which are offered by either our Rapid3D software package suited for three-dimensional reconstruction and visualization of bio-medical images or Ellipse modular software package devoted to biological image processing (ViDiTo company, Slovakia)
Analysis of confocal images of fibres
Janáček, Jiří ; Saxl, Ivan ; Mao, X. W. ; Kubínová, Lucie
Aim of the paper is analysis of 3D confocal images of blood capillaries by digital filters, segmentation and medial axis extraction
Nástroje pro trojrozměrnou vizualizaci struktur v biologii
Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie ; Smrčka, P. ; Hána, K.
By consecutive scanning of layers of the biological specimen by a confocal microscope we obtain a stack of optical sections, i.e. a 3D digital representation of the specimen. Our research focuses, on volume reconstruction of large biological tissues, i.e. tissues greater than field of view and/or thicker than maximal depth of scanning of the confocal microscope. As a result of volume reconstruction we obtain a high resolution 3D image of the biological specimen. In order to visualize 3D objects on 2D computer screens we developed several tools including visualization by a specialized VolumePro board and by using consumer graphics cards supporting DirectX and OpenGL
Objemová rekonstrukce velkých biologických tkáňových vzorků
Čapek, Martin ; Janáček, Jiří ; Kubínová, Lucie ; Smrčka, P. ; Hána, K.
Volume reconstruction is a technique for visualization of a biological specimen which is greater than the field of view of a used optical instrument - a confocal laser scanning microscope in our case. The first step of volume reconstruction is acquisition of sets of digital volume images (spatial tiles which overlap) from all studied physical slices. The second step is horizontal merging of overlapping spatial tiles of the same physical slice (mosaicking). The third reconstruction step is vertical merging of digital volumes of successive physical slices of the specimen. The resulting large digital volumes are visualized using a VolumePro hardware board that offers real-time 3D volume rendering. In this paper we show a reconstruction of a chick embryonic kidney
Objemová vizualizace velkých biologických tkáňových vzorků
Čapek, Martin ; Kubínová, Lucie ; Janáček, Jiří ; Hána, K. ; Smrčka, P.
We apply volume reconstruction for visualization of a biological specimen greater than the field of view of a confocal laser scanning microscope. Prior to the volume reconstruction, large specimens are cut into thin physical slices. The first step of volume reconstruction is acquisition of digital volume images (spatial tiles which overlap) from all studied physical slices. The second step is horizontal merging of overlapping spatial tiles of the same physical slice using a registration algorithm based on a mutual information and translation. The third reconstruction step is vertical merging of digital volumes of successive physical slices using an elastic registration algorithm based on B-splines. The resulting large digital volumes are visualized by a VolumePro hardware board that provides volume rendering in real-time. In this paper we show a reconstruction of a chick embryonic kidney.

National Repository of Grey Literature : 34 records found   previous11 - 20nextend  jump to record:
See also: similar author names
12 Kubinova, Lucie
1 Kubínová, Lenka
Interested in being notified about new results for this query?
Subscribe to the RSS feed.