National Repository of Grey Literature 59 records found  beginprevious20 - 29nextend  jump to record: Search took 0.00 seconds. 
Denaturace of proteins studied by different methods
Fojtíková, Jana ; Pekař, Miloslav (referee) ; Krouská, Jitka (advisor)
protein, denaturation, differential scanning calorimetry, infrared spectroscopy, cationic surfactant
Salts of 2-aminoethanol and ferrocene-based acids
Zábranský, Martin ; Štěpnička, Petr (advisor) ; Němec, Ivan (referee)
Combination of the compact but sterically flexible ferrocene scaffold with intermolecular binding potential and conformational variability of (2-hydroxyethyl)ammonium structural motif was utilised in the construction of solid crystalline materials. Crystallisation in systems containing ferrocenecarboxylic, 2-ferrocenylacetic, 3-ferrocenylpropionic, 3-ferrocenyl- acrylic, 3-ferrocenylacrylic, 3-ferrocenylpropiolic, ferrocene-1,1'-dicarboxylic or ferrocene- sulfonic acid with 2-aminoethanol afforded crystals of the corresponding salts. The resulting crystalline products were characterised with the usual methods (proton nuclear magnetic resonance, infrared spectroscopy, elemental analysis) and their crystal structures were determined by means of single-crystal X-ray diffraction analysis. The crystal structures of the salts mentioned above usually contain rather complicated two dimensional networks of charge-assisted hydrogen bonds. With the aim of studying potentially more simple hydrogen-bonded structures, additional crystallisation experiments were conducted in systems of ferrocenecarboxylic acid and 2-(methylamino)ethanol or 2-(dimethylamino)ethanol. These experiments yielded simple salt of the former amine and adducts of salts of both bases with ferrocenecarboxylic acid in the ratio of 1:1. The...
Application of modern analytical methods for the study of selected boron coordination compounds
Hrušková, Helena ; Jelínek, Ivan (advisor) ; Dian, Juraj (referee)
This thesis is focused on the study of boron coordination compounds, specifically boron pyrogallol and 2,3-dihydroxynaphthalene ligand complexes. In the introductory part of the work are discussed the properties of boron compounds, their preparation, the possibility of separation by capillary electrophoresis and methods of structural characterization. In the first part of the thesis, the methods of preparation of complexes are discussed and for each complex the optimal yield response is chosen. The resulting products were studied by low resolution mass spectrometry. In the second part of the thesis, structures of complexes, including their modeling in the Gaussian program, were described more precisely. Furthermore, the complexes were characterized by high resolution mass spectrometry. The complexes were also studied by 11 B, 1 H and 1 H COSY NMR and IR spectroscopy. The third part was devoted to the separation of these substances from the mixture after the reaction. CE-UV and CE-MS techniques were used for this purpose. To convert the results, the separation method was developed in ammonium formate buffers that are compatible with both instruments. The equilibration between complexes and ligands was also monitored by CE-UV. A special chapter is the study of pyrogallol autooxidation by UV-VIS and...
Characterization of proteins of 2'-5' oligoadenylate pathway by means of vibrational spectroscopy
Víšová, Ivana ; Kopecký, Vladimír (advisor) ; Bednárová, Lucie (referee)
The work concerns to structural characterization of two important proteins of 2'-5' oligoadenylate pathway participating in an immune response of organism to a viral infection. Studied proteins were ankyrin domain of mouse RNase L, the C-terminal part of human phosphodiesterase 12 and the complete human phosphodiesterase 12. The proteins were characterized by Raman spectroscopy, infrared spectroscopy, electronic circular dichroism, dynamic light scattering and in addition by two non-spectroscopic methods- differential calorimetry and electrophoresis. For each protein the secondary structures, thermal stability, weight of oligomers and generally a basic characterization by above mentioned methods were provided.
Mineralogical analysis of historical paintings
Čermáková, Zdeňka ; Hradil, David (advisor) ; Kanický, Viktor (referee) ; Artioli, Gilberto (referee)
Historical painted works of art have a very complex inner structure. The period painting technique led to the execution of a ground layer followed by several layers of underpainting and a top paint layer, over which a layer of glaze has been applied to increase the resistance to external wear. Each of these colour layers is composed of a dye or a pigment (or their mixture) bound by organic binder. Throughout the history, pigments were commonly prepared from minerals, either extracted from natural deposits or created artificially. In these heterogeneous layers containing both inorganic and organic components, undesirable degradation changes either driven by processes taking place directly in the colour layer or influenced by external agents may occur. Mineralogical approach, which focuses primarily on the structure of studied pigments, helps in the clarification of the occurring processes, in the determination of conditions leading to degradation as well as in the identification of original/degradation phases. Furthermore, it can be profitably applied in the micro- analysis of mineral pigments present in tiny micro-samples obtained from works of art, contributes to the artwork's provenance/authorship studies and the determination of regional provenance of the employed mineral pigments. This Ph.D....
Fourier transform infrared spectroscopy: application in a study of transient species in discharge and ablation plasma
Kubelík, Petr ; Civiš, Svatopluk (advisor) ; Wild, Jan (referee) ; Rohlena, Karel (referee)
The present dissertation consists of two thematically related parts. The first one (includes two publications) deals with the study of chemical pro- cesses and spectroscopy of highly reactive particles produced in the discharge plasma. This part includes the analysis of ro-vibronic CN radical transitions in the infrared region and the study of chemical reactions in pulsed dischar- ges. The discharge was used as a tool for research of decomposition of simple precursors (acetonitrile, formamide and BrCN) and the subsequent formation of intermediates and reaction products in plasma. The obtained experimental results were interpreted using a numerical model developed in context of this work and used to simulate the kinetics of the studied systems. The second part (includes seven works) is aimed at high-resolved spectro- scopy of metals in the ablation plasma. A total of six different metals were studied: Au, Ag, Cu, Cs, K and Na. The main motivation for spectroscopic research on metals in the infrared region is to obtain information on atomic metals transitions, which are particularly important for astronomical identi- fication of lines in the spectra of stars and their spectroscopic assignments. Each publication contains a summary of the analyzed atomic transitions of which a considerable portion had not...
Optimization of the skin barrier model with isolated ceramides of human stratum corneum
Dulanská, Lucia ; Pullmannová, Petra (advisor) ; Zbytovská, Jarmila (referee)
Charles University, Faculty of Pharmacy in Hradec Králové Department of Biophysics and Physical Chemistry Author: Lucia Dulanská Supervisor: Mgr. Petra Pullmannová, Ph.D Title of thesis: Optimization of the skin barrier model with isolated ceramides of human Stratum corneum Stratum corneum (SC), the uppermost layer of the skin, regulates transcutaneous water loss and protects against outer conditions and harmful substances. It consists of cornified cells - corneocytes and extracellular lipid matrix, which is responsible for the barrier functions. Corneocytes are covered with covalently bound lipids creating the corneocyte lipid envelope (CLE). CLE is considered to interconnect the extracellular lipids with corneocytes and to have a templating effect. We aimed to optimize a skin lipid model simulating also the presence of CLE. The lipidic part of the model was prepared from an equimolar mixture of isolated human skin ceramides (hCer), cholesterol and free fatty acids (FFA, either protonated or deuterated) with 5 weight % of cholesteryl sulfate. hCer were extracted from the isolated human SC and purified by the column chromatography. The composition of hCer was determined by the high- performance thin-layer chromatography. The reverse-phase and normal phase silica gel particles served as the CLE...
Synthesis of low-crosslinked polymers by plasma polymerization
Kuchtová, Štěpánka ; Bránecký, Martin (referee) ; Čech, Vladimír (advisor)
This bachelor thesis deals with plasma enhanced chemical vapour deposition (PECVD), specifically plasma polymerisation, which has been used for the synthesis of low density crosslinked polymer thin films. Organosilicon thin films were deposited on a silicon substrate by radio frequency (RF) capacitively coupled plasma in a deposition chamber. Spectroscopic ellipsometry was used to determine the layer thickness and its optical properties. The chemical structure of the layers was investigated by Fourier transform infrared spectroscopy and the mechanical properties were investigated by nanoindentation. The effect of power and self-bias (USB) on the chemical structure, mechanical and optical properties of the as-prepared layers, which are related to the crosslinking density, was investigated in the context of achieving low crosslinking density of the material. Low crosslinked plasma polymers were synthesized at a self-bias level of 1 V, which corresponds to an approximate RF power of 0,1 W. This material can be characterized by a density of 1, 2 g·cm-3 an elastic modulus of 4 GPa, a hardness of 0,04 GPa and a refractive index of 1.53 at 633 nm (He-Ne laser wavelength). Infrared spectroscopy confirmed that this plasma polymer is composed of a carbon network with fewer embedded silicon atoms and, in particular, the highest concentration of vinyl groups compared to plasma polymers prepared at higher powers.
Optimization of the skin barrier model with isolated ceramides of human stratum corneum
Dulanská, Lucia ; Pullmannová, Petra (advisor) ; Zbytovská, Jarmila (referee)
Charles University, Faculty of Pharmacy in Hradec Králové Department of Biophysics and Physical Chemistry Author: Lucia Dulanská Supervisor: Mgr. Petra Pullmannová, Ph.D Title of thesis: Optimization of the skin barrier model with isolated ceramides of human Stratum corneum Stratum corneum (SC), the uppermost layer of the skin, regulates transcutaneous water loss and protects against outer conditions and harmful substances. It consists of cornified cells - corneocytes and extracellular lipid matrix, which is responsible for the barrier functions. Corneocytes are covered with covalently bound lipids creating the corneocyte lipid envelope (CLE). CLE is considered to interconnect the extracellular lipids with corneocytes and to have a templating effect. We aimed to optimize a skin lipid model simulating also the presence of CLE. The lipidic part of the model was prepared from an equimolar mixture of isolated human skin ceramides (hCer), cholesterol and free fatty acids (FFA, either protonated or deuterated) with 5 weight % of cholesteryl sulfate. hCer were extracted from the isolated human SC and purified by the column chromatography. The composition of hCer was determined by the high- performance thin-layer chromatography. The reverse-phase and normal phase silica gel particles served as the CLE...

National Repository of Grey Literature : 59 records found   beginprevious20 - 29nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.