National Repository of Grey Literature 114 records found  previous11 - 20nextend  jump to record: Search took 0.00 seconds. 
PREPARATION AND APPLICATION OF SOME BIOPOLYMERS, NANOPARTICLES AND NANOFIBRES FOR COSMETICS AND FOOD
Bokrová, Jitka ; Pekař, Miloslav (referee) ; Kráčmar, Stanislav (referee) ; Márová, Ivana (advisor)
The presented doctoral thesis is focused on preparation of nanoparticles and nanofibers with natural active ingredient and testing their biological effects. Modern types of application forms were prepared from biomaterials based on one or more natural polymers. Chitosan particles were prepared from cross-linked polymer using ultrasonication. A mixture of soy lecithin and cholesterol was used for preparation of liposomes. Poly-3-hydroxybutyrate was used for preparation of combined liposomes, too. All liposome particles were prepared by ultrasonication. Nanofibers were obtained from polyhydroxybutyrate using electrospinning. Mixtures of low-molecular antioxidants obtained by extraction from natural sources were used as active ingredients. Different types of teas, barks, herbs, spices, fruits and vegetables were selected as sources of natural antioxidants. Total phenolic and flavonoid content and total antioxidant activity of extracts were determined using spectrophotometrical methods. Obtained natural extracts were subsequently used for encapsulation. Prepared application forms were characterized in terms of their physicochemical properties. Particle size was monitored by dynamic light scattering. Colloidal stability of particles in suspension was determined using zeta potential. Spectrophotometry was used to evaluate the efficiency of encapsulation of active compounds into particles. The morphology of the new type of combined PHB liposomes was monitored by electron microscopy. Chromatography was used for quantification of individual components of particles. Morphology of nanofibers and incorporation of active agent into their structure were monitored using FTIR-ATR spectroscopy and electron microscopy. Afterwards, antimicrobial, cytotoxic and genotoxic effects of preparations were evaluated. It was found that the most suitable types of extracts for liposome preparation are aqueous and lipid extracts of natural antioxidants. Prepared particles showed excellent stability and good encapsulation efficiency. The study confirmed that incorporation of polydroxybutyrate into liposome structure does not reduce neither the colloidal stability of the particle, nor the efficiency of encapsulation process. Antimicrobial and antimycotic effect of preparations against model microorganisms Micrococcus lutues, Serratia marcescens and Candida glabrata was detected. It was found that process of encapsulation increases the inhibitory effect of natural extracts of antioxidants. The safety of preparations was assessed using two human cell cultures: epidermal keratinocytes and HaCaT cell line. Assays of cell viability and plasma membrane integrity were used to determine cytotoxicity of preparations. Low toxicity of liposome particles was confirmed by a series of cytotoxic tests. Obtained data showed that association of phospholipid with PHB polymer does not cause a significant increase in cytotoxicity in human skin cells. Genotoxicity testing on model procaryotic organism confirmed zero genotoxic potential of preparations. The new type of combined particles and polymeric fibers cant thus be used as a carrier for active ingredients, complex natural extracts, antimicrobial agents and many others.
Interaction of PHA-based particles and fibres with human cells
Tarageľ, Matej ; Bokrová, Jitka (referee) ; Márová, Ivana (advisor)
This bachelor thesis deals with the preparation and characterization of PHA based nanoparticles and nanofibers and their subsequent influence on the living human skin cell. Theoretical part is aimed at polyhydroxyalkanoates, preparation of PHA based nanoparticles and nanofibers and methods of their physical, biological and chemical characterization. Further, the theory of liposomes, their clasification, preparation and physical and chemical properties are discussed too. Next, the theoretical part focuses on the cultivation of human cells and general information on selected cell lines. The experimental part is focused on the optimalization of the preparation of liposomes and fibers enriched by PHA. Further, characterization of stability and interactions of these nanomaterials with human HaCaT cells was proved. Cytotoxic and genotoxic tests were performed and determination of concentration of phospholipids in prepared particles was realized too.
Influence of some super-foods and their active components on human cells
Maslonková, Ivana ; Skoumalová, Petra (referee) ; Márová, Ivana (advisor)
The presented diploma thesis is focused on the study of composition and biological effects of some super-foods. Theoretical part deals with basic information about chosen superfoods and their bioactive substances. Further, theoretical part describes the overview of vesicular systems used for encapsulation and the most common methods of particle characterization. A brief review of cell cultures and cultivation of human cells is presented as well as methods for cytotoxicity a genotoxicity testing. In the experimental section, aqueous and ethanol extracts of super-foods were prepared. These extracts were then encapsulated into liposomal and combined PHB particles. Super-food extracts were characterized by spectrophotometrical methods in order to determine the content of polyphenols, flavonoids, anthocyanins, carotenes, chlorophyll, tannins, and antioxidant activity. The physico-chemical characteristics of prepared liposomal and combined particles were determined too. The particles with encapsulated extracts were further tested using the MTT assay and SOS chromotest to describe their potential cytotoxic and genotoxic effects.
Synthesis of spherical gold nanoparticles for biomedical applications
Gablech, Evelína ; Adam, Vojtěch (referee) ; Drbohlavová, Jana (advisor)
Tato práce se zabývá syntézou sférických zlatých nanočástic pro biomedicínské aplikace. Zlaté nanočástice byly syntetizovány ekologicky nezávadnými metodami, kterým je věnována i značná část rešerše. Cílem bylo nasyntetizovat stabilní koloidní zlaté nanočástice vhodné pro různé biomedicínké aplikace zejména, pro in vivo a in vitro zobrazovací metody, kterých přehled je take obsažen v teoretické části práce. Také byl proveden test cytotoxicity, jelikož částice mají být použitelné pro in vivo aplikace. Částice byly dale charakterizovány metodami SEM, DLS a UV-VIS.
Ion-selective membrane with antimicrobial effect
Gablech, Evelína ; Farka,, Zdeněk (referee) ; Soukupová,, Jan (referee) ; Drbohlavová, Jana (advisor)
Tato práce se zabývá zlepšením antimikrobiálních vlastností komerčních polymerních membrán používaných v mlékárenském průmyslu pro filtraci mléčných výrobků jako je syrovátka. Tyto membrány trpí kontaminací způsobenou mikroorganismy přítomnými v mléce během procesu filtrace. Toto biologické znečištění ovlivňuje životnost membrány i samotný filtrační proces. Pro ochranu membrány před vytvořením biofilmu z mikroorganismů byly tyto membrány modifikovány pomocí plazmových metod tak, aby došlo k funkcionalizaci aminovými skupinami pro následnou imobilizaci nanočástic stříbra a selenu. Antimikrobiální aktivita obou typů nanočástic a membrán s imobilizovanými nanočásticemi byla stanovena proti buněčným kmenům Staphylococcus aureus a Escherichia coli.
Functionalization of gold nanoparticles for imaging
Jakubechová, Jana ; Pekárková, Jana (referee) ; Drbohlavová, Jana (advisor)
The diploma thesis deals with synthesis of gold nanoparticles and their surface functionalization suitable for in vitro imaging. In this view there are requirements for optical properties such as stability, monodispersity and no presence of cytotocxicity. In order to fulfill these demands the synthesis by Turkevich method with surface modification by glutathione and polytethylenglycol was performed. Analytical methods such as DLS, SEM and Zeta potential measurement were utilized to characterize the physical and chemical properties of synthesized gold nanoparticles. Finally, MTT assay was performed to evaluate toxicity of gold nanoparticles using HEK 293 cell line.
Use of cell cultures to testing of natural substances of plant origin
Ručková, Michaela ; Kostovová, Iveta (referee) ; Márová, Ivana (advisor)
The presented bachelor thesis is focused on preparing aqueous and oil extracts of plant origin, their characterization and testing of their cytotoxicity and genotoxicity. The theoretical part contains basic information about plants and kinds of spices or tea that were used. Description of used methods of liposome preparation and encapsulation of active substances, measurement of antioxidant activity, particle characterization, cultivation of cell cultures and the principle of cytotoxicity and genotoxicity tests used in this thesis is included. Phenolics and flavonoids content was determined using the spectrophotometry. Antioxidant activity was evaluated spectrophotometrically as well. By ultrasonic homogenization method, liposomes were prepared and active agents were encapsulated into these vesicles. Encapsulation efficiency and stability of active substances were measured by spectrophotometry. By DLS method, size of particles was determined. Particle stability was derived from the zeta potential value. Important part of the bachelor thesis was cultivation of human keratinocytes. The cytotoxicity of extracts and liposomes was assessed by MTT assay on human cell cultures. The genotoxicity of extracts and liposomes was defined using SOS Chromotest on model organism, genetically modified E. coli. In conclusion, the potential use of prepared liposomes in the cosmetic or pharmaceutical industry has been proposed.
Biocomposite material for 3D print in the field of regenerative medicine
Chaloupková, Kateřina ; Obruča, Stanislav (referee) ; Přikryl, Radek (advisor)
The presented thesis deals with preparation of material for use in regenerative medicine based on poly(3-hydroxybutyrate) and its characterization. In addition to poly (3-hydroxybutyrate), there were used other materials lactic acid (PLA), tricalcium phosphate (TCP) and two types of plasticizers Citroflex®B-6 (CB6) and Syncroflex3114 (S3114). These materials were selected based on their biocompatibility and, in the case of TCP, also bioactivity. TCP allows new bone to grow on the surface of the scaffold. PLA was used to improve the mechanical properties of the material. Both plasticizers have been used to improve the processability of the material. Theoretical part of this work contains a literature review describing basic information about used materials. Aim of the experimental part is to prepare the material, characterization of properties and determination of printability on a 3D printer. The material is examined for thermal properties by thermogravimetric analysis and differential scanning calorimetry. This work also deals with the matter of 3D printing, especially FDM technology. It has been found that materials containing the syncroflex plasticizer are better processed and therefore printed on a 3D printer. The printability tests performed are temperature towers and filling studies. Printed samples were subjected to mechanical tests of tensile and bending tests. Experiments of cytotoxicity and biocompatibility of the material were also performed. Within the work, TCP particles were characterized using a particle size analyzer. The average TCP particle size is 10,76 µm. Using SEM-EDX, the distribution of TCP in sample filaments was subsequently observed, where it was found that by mixing TCP particles with the remaining components of materials, TCP particles agglomerate into formations up to 20 µm in size. Roughness of materials was determined by confocal microscopy. Cytotoxicity was also tested in the extracts of samples on mouse fibroblasts. Cytotoxicity was determined by metabolic activity assay and light microscopy. The metabolic activity test proved the biocompatibility of the observed materials; therefore, it was possible to perform cell proliferation and biocompatibility tests directly on the samples. Assays were performed using human mesenchymal stem cells. DNA quantification was used to determine cell proliferation. Shape of cells was subsequently observed by confocal microscopy. Tests confirmed growth of cells and their appropriate shape. Stem cell differentiation into bone was performed by measuring alkaline phosphatase activity.
Analysis of active substances and biological effects of some non-tradizional cereals
Pecháček, Michal ; Vysoká, Marie (referee) ; Márová, Ivana (advisor)
This thesis deals with the characterization of active substances and biological effects of non-traditional cereals. Basic substances of these non-traditional cereals such as carbohydrates or proteins are characterized in this work. Active compounds such as antioxidants, polyphenols or -glucans are also characterized. These substances were mainly analysed by spectrophotometric methods. The theoretical part describes cereals in general. It focuses on grain morphology, cereal products and mostly on chemical composition. The summary of substances appearing in the cereal grain such as carbohydrates, proteins, vitamins, minerals etc. was processed in this part. In the practical part, the samples of the non-traditional cereals such as amaranth, sorghum, millet, kamut, buckwheat, quinoa, Job’s tears and teff were analysed. Amaranth, millet and buckwheat were also analysed in the form of flakes. Teff was analysed only in the form of flakes. Sorghum and quinoa were analysed also in their coloured variations. Firstly, the water extracts were prepared, then they were used for determination of antioxidant activity, the content of polyphenols compounds and flavonoids. The hydrolysed samples were used for determination of the carbohydrates. For other basic analysis, samples were used in the form of powder. Best results were measured for quinoa, amaranth and buckwheat. Besides basic analysis, the content of -glucans was measured. However, the content of -glucans in these non-traditional cereals was very low. Selected cereals were tested for cytotoxicity on human cells. Cytotoxicity was evaluated by using the MTT cytotoxicity test on human keratinocytes HaCaT and human caucasian colon adenocarcinoma CaCO-2. The sensory analysis was carried out in the last part of the thesis. There were tested 6 samples. From these samples were made muffins that were analysed and sensorically evaluated.
Influence of liposomal platinum cytostatics on cancer cells – voltammetric study
Laníková, Petra ; Prášek, Jan (referee) ; Hynek, David (advisor)
Aim of this thesis is voltammetric study influence of liposomal platinum cytostatics on cancer cells. One of the goals is summarize available informations about influence of cisplatine on cancer cells, its encapsulation into liposome and affection of this cytostatic cisplatin encapsulated in liposome on cancer cell lines. In literary recherche is detail description of these issues. Than is there specification of voltammetric methods, which serve to electrochemical detection of cisplatin. Based on literary recherche was chosen the best method for detection and subsequently the method was optimalized and than was applied to measuring itself.

National Repository of Grey Literature : 114 records found   previous11 - 20nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.