Original title:
Detekce škodlivosti komunikačních partnerů a jejich sítí
Translated title:
Detection of Harmfulness of Communication Partners and Their Networks
Authors:
Kučera, Rostislav ; Homoliak, Ivan (referee) ; Očenášek, Pavel (advisor) Document type: Master’s theses
Year:
2024
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta informačních technologií Abstract:
[cze][eng]
S rostoucí závislostí populace na elektronických zařízeních, roste také riziko ztráty nebo zneužití dat. Se zvyšujícím se množstvím útoků v počítačových sítích, nabírají systémy pro detekci škodlivého provozu na důležitosti. Cílem této práce je teoretický rozbor a implementace modulů pro detekci maligní počítačové komunikace pomocí metod strojového učení, konkrétně pomocí modelu neuronové sítě, a statistické analýzy, které jsou nasazeny v rámci rozšířeného systému pro detekci průniku Snort.
With the growing dependence of the population on electronic devices, the risk of data loss or misuse also increases. As the number of attacks in computer networks rises, systems for detecting malicious traffic become more important. The goal of this work is a theoretical analysis and implementation of modules for detecting malicious computer communication using machine learning methods, specifically a neural network model, and statistical analysis, which are deployed within the extended intrusion detection system Snort.
Keywords:
anomaly detection; IDS; machine learning; neural network; Snort; statistical analysis; detekce anomálií; IDS; neuronová síť; Snort; statistická analýza; strojové učení
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: https://hdl.handle.net/11012/248343