Název:
Aproximace hlubokých neuronových sítí
Překlad názvu:
Deep Neural Networks Approximation
Autoři:
Stodůlka, Martin ; Mrázek, Vojtěch (oponent) ; Vaverka, Filip (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2019
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Cílem mé práce je zjistit vliv a dopad aproximovaného počítání na přesnost hluboké neuronové sítě, konkrétně neuronové sítě pro klasifikaci obrazu. Pro implementaci neuronové sítě byla použita varianta frameworku Caffe zvaná Ristretto-caffe, která byla rozšířena o možnost použití aproximovaných operací v konvolučních vrstvách. pro používání aproximovaných komponent. Aproximované počítání bylo použito na násobení v dopředné propagaci při konvoluci. Jako aproximované komponenty byly zvoleny komponenty z knihovny Evoapproxlib.
The goal of this work is to find out the impact of approximated computing on accuracy of deep neural network, specifically neural networks for image classification. A version of framework Caffe called Ristretto-caffe was chosen for neural network implementation, which was extended for the use of approximated operations. Approximated computing was used for multiplication in forward pass for convolution. Approximated components from Evoapproxlib were chosen for this work.
Klíčová slova:
aproximované komponenty; aproximované počítání; C++; Caffe; CUDA; Evoapproxlib; Hluboké neuronové sítě; klasifikace obrazu; Ristretto-caffe; approximated circuits; approximated computing; C++; Caffe; CUDA; Deep neural networks; Evoapproxlib; image classification; Ristretto-caffe
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/180205