Název:
Využití umělé inteligence k monitorování stavu obráběcího stroje
Překlad názvu:
Using artificial intelligence to monitor the state of the machine
Autoři:
Popara, Nikola ; Bražina, Jakub (oponent) ; Kovář, Jiří (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2021
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta strojního inženýrství
Abstrakt: [cze][eng]
Práca je zameraná na monitorovanie najviac namáhaných častí obrábacieho stroja. Použitá metóda umelej inteligencie je rekurentná neurónová sieť a jej modifikácie. Nakoľko dáta zo senzorov mali sekvenčný charakter, bolo vhodné zvoliť práve rekurentnú neuóonovú sieť. Práca sa zaoberá riešením troch úloh. Prvá úloha bola zameraná na stanovenie predpokladaného opotrebenia frézy, na základe nepriamej metódy využívajúcej neurónovú sieť. Ďalšia úloha sa zameriava na detekciu poruchy ložíska na základe dát získaných z akcelerometra. Treťou úlohou bolo predikovať dobu do poškodenia monitorovaného ložiska.
This thesis is focus on monitoring state of machine parts that are under the most stress. Type of artificial intelligence used in this work is recurrent neural network and its modifications. Chosen type of neural network was used because of the sequential character of used data. This thesis is solving three problems. In first problem algorithm is trying to determine state of mill tool wear using recurrent neural network. Used method for monitoring state is indirect. Second Problem was focused on detecting fault of a bearing and classifying it to specific category. In third problem RNN is used to predict RUL of monitored bearing.
Klíčová slova:
GRU; LSTM; monitorovanie ložiska; predikcia RUL; rekurentná neurónová sieť; stav opotrebenia frézy; condition monitoring of a bearing; degradation state of a bearing; GRU; LSTM; prediction of RUL; recurrent neural network
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/199575