Název:
Rekurentní neuronové sítě pro klasifikaci textů
Překlad názvu:
Recurrent Neural Network for Text Classification
Autoři:
Myška, Vojtěch ; Kolařík, Martin (oponent) ; Povoda, Lukáš (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2018
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií
Abstrakt: [cze][eng]
Diplomová práce se zabývá návrhem neuronových sítí pro klasifikaci pozitivních a negativních textů. Vývoj probíhal v programovacím jazyce Python. Návrh modelů hlubokých neuronových sítí byl proveden pomocí vysokoúrovňového API Keras využívající knihovnu pro numerické výpočty TensorFlow. Výpočetní operace byly provedeny pomocí GPU využívající CUDA architekturu. Výstupem práce je jazykově nezávislý model neuronových sítí umožňující klasifikaci textů na úrovni znaků. Vzorky byly úspěšně klasifikovány až v 93,64% případů. Trénovací a testovací data byla poskytnuta vícejazyčnou a Yelp databází. Simulace byly provedeny na 1200000 anglických, 12000 českých, německých a španělských textů.
Thesis deals with the proposal of the neural networks for classification of positive and negative texts. Development took place in the Python programming language. Design of deep neural network models was performed using the Keras high-level API and the TensorFlow numerical computation library. The computations were performed using GPU with support of the CUDA architecture. The final outcome of the thesis is linguistically independent neural network model for classifying texts at character level reaching up to 93,64% accuracy. Training and testing data were provided by multilingual and Yelp databases. The simulations were performed on 1200000 English, 12000 Czech, German and Spanish texts.
Klíčová slova:
CUDA; hluboké učení; Keras; Kex; klasifikace textů; neuronové sítě; rekurentní neuronové sítě; TensorFlow; CUDA; deep learning; Keras; Kex; neural networks; recurrent neural networks; TensorFlow; texts classification
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/80785