Original title:
Detekce význačných bodů v obrazech vozidel
Translated title:
Detection of Landmarks on Vehicle Images
Authors:
Chadima, Vojtěch ; Bartl, Vojtěch (referee) ; Herout, Adam (advisor) Document type: Bachelor's theses
Year:
2019
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta informačních technologií Abstract:
[cze][eng]
Tato práce řeší automatickou detekci význačných bodů na obrázcích automobilu. Takto detekované význačné mohou dále sloužit k automatické kalibraci kamery, například pro dohled v dopravě, což je problém, po jehož vyřešení je možné kameru využít v aplikacích jako měření rychlosti vozidel či hustoty dopravy. K detekci význačných bodů jsem použil konvoluční neuronovou síť typu Stacked Hourglass. Dále byl vytvořen generátor trénovacích dat v podobě obrázku a odpovídající anotace využívající API Blenderu, který umožňuje vytváření datasetů pro libovolné objekty. Detekované význačné body jsem analyzoval a seřadil dle přesnosti jejich detekce, přičemž platí, že čím přesněji je bod na snímku detekovatelný, tím je vhodnější pro použití při úlohách typu kalibrace kamery.Podařilo se natrénovat modely neuronových sítí, které jsou schopny detekovat 1 021 význačných bodů, z nichž nejlepších 24 s průměrnou odchylkou menší než 3 pixely. Výsledky této práce jsou základem pro kalibraci kamery na základě rozpoznání nejvhodnějších význačných bodů, případně mohou dále sloužit k vytváření vlastních trénovacích datasetů a trénování vlastních modelů neuronových sítí typu Stacked Hourglass.
This thesis aims to introduce automatic detection of landmarks on vehicle images. Detected landmarks can be then used for automatic traffic surveillance camera calibration or other computer vision applications. I solved the landmarks detection problem by using a novel type of convolutional neural network called Stacked Hourglass. Furthemore, I created an automatic trainig dataset (image + anotations) generator based on Blender API, which allows to create various datasets. Detected landmarks are analyzed and sorted in order to determine a set of superior landmarks that could be later used for camera calibration. The best-performing models detect up to 1 021 landmarks, while the best of them have less than 3.0 pixels average error. Finally, results can be further used in automatic camera calibration based on landmarks detection, to create custom datasets or to train Stacked Hourglass convolutional neural networks.
Keywords:
Blender; camera calibration; convolutional neuralnetworks; detection of landmarks; machine learning; Stacked Hourglass; Blender; detekce význačných bodů; kalibrace kamery; konvoluční neuronovésítě; Stacked Hourglass; strojové učení
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/180156