Název:
Genetický návrh klasifikátoru s využítím neuronových sítí
Překlad názvu:
Neural Networks Classifier Design using Genetic Algorithm
Autoři:
Tomášek, Michal ; Vašíček, Zdeněk (oponent) ; Mrázek, Vojtěch (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2016
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Cílem této práce je genetický návrh neuronových sítí, jenž budou schopné provádět klasifikaci v rámci různých klasifikačních úloh. K vytváření těchto neuronových sítí je použit algoritmus vycházející z algoritmu NeuroEvolution of Augmenting Topologies (zkráceně známého jako NEAT). Dále je představena myšlenka předzpracování, která je v implementovaném výsledku rovněž zahrnuta. Cílem předzpracování je snížení výpočetních nároků pro zpracování datové sady daného klasifikačního problému. Výsledkem této práce je množina experimentů provedených nad datovou sadou pro detekci rakovinných buněk a databází ručně psaných číslic MNIST. Klasifikátory vytvořené pro rakovinné buňky pak dosahují více jak 99% přesnosti a u experimentu MNIST dochází ke snížení výpočetních nároků o více jak 10% se zanesením zanedbatelné chyby o velikosti 0,17%.
The aim of this work is the genetic design of neural networks, which are able to classify within various classification tasks. In order to create these neural networks, algorithm called NeuroEvolution of Augmenting Topologies (also known as NEAT) is used. Also the idea of preprocessing, which is included in implemented result, is proposed. The goal of preprocessing is to reduce the computational requirements for processing of benchmark datasets for classification accuracy. The result of this work is a set of experiments conducted over a data set for cancer cells detection and a database of handwritten digits MNIST. Classifiers generated for the cancer cells exhibits over 99 % accuracy and in experiment MNIST reduces computational requirements more than 10 % with bringing negligible error of size 0.17 %.
Klíčová slova:
Evoluční algoritmus; Genetický algoritmus; Klasifikace; Klasifikace rakoviny prsu; MNIST; NEAT; Neuron; Neuronová síť; Předzpracování; TWEANN; Umělá neuronová síť; Úspora energie; Artificial neural network; Breast cancer classification; Classification; Energy saving; Evolutionary algorithm; Genetic algorithm; MNIST; NEAT; Neural network; Neuron; Preprocessing; TWEANN
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/61890