Original title:
Modelování zvukových signálů pomocí neuronových sítí
Translated title:
Audio signal modelling using neural networks
Authors:
Pešán, Michele ; Ištvánek, Matěj (referee) ; Miklánek, Štěpán (advisor) Document type: Master’s theses
Year:
2021
Language:
eng Publisher:
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií Abstract:
[eng][cze]
Neuronové sítě vycházející z architektury WaveNet a sítě využívající rekurentní vrstvy jsou v současnosti používány jak pro syntézu lidské řeči, tak pro „black box“ modelování systémů pro úpravu akustického signálu – modulační efekty, nelineární zkreslovače apod. Úkolem studenta bude shrnout dosavadní poznatky o možnostech využití neuronových sítí při modelování akustických signálů. Student dále implementuje některý z modelů neuronových sítí v programovacím jazyce Python a využije jej pro natrénování a následnou simulaci libovolného efektu nebo systému pro úpravu akustického signálu. V rámci semestrální práce vypracujte teoretickou část práce, vytvořte zvukovou databázi pro trénování neuronové sítě a implementujte jednu ze struktur sítí pro modelování zvukového signálu. Neuronové sítě jsou v průběhu posledních let používány stále více, a to víceméně přes celé spektrum vědních oborů. Neuronové sítě založené na architektuře WaveNet a sítě využívající rekurentních vrstev se v současné době používají v celé řadě využití, zahrnující například syntézu lidské řeči, nebo napřklad při metodě "black-box" modelování akustických systémů, které upravují zvukový signál (modulačí efekty, nelineární zkreslovače, apod.). Tato akademická práce si dává za cíl poskytnout úvod do problematiky neuronových sítí, vysvětlit základní pojmy a mechanismy této problematiky. Popsat využití neuronových sítí v modelování akustických systémů a využít těchto poznatků k implementaci neuronových sítí za cílem modelování libovolného efektu nebo zařízení pro úpravu zvukového signálu.
Neural networks based upon the WaveNet architecture and recurrent neural networks are nowadays used in human speech synthesis and other various tasks such as "black-box" modeling systems for acoustic signals alteration (modulation effects, non-linear distortion units, etc.). This work aims, to sum up existing methods of neural network use in acoustic signal modeling. Next, the student is to implement chosen model of neuron network Python and will train this architecture to perform a simulation of desirable sound effect or acoustic alteration system. The task for this semester is, to sum up existing knowledge concerning neural networks. Training database of sound samples and implementation of a sound modeling neural net is to be created as well. Through recent years, neural networks have been used more and more extensively across many science fields. Neural networks based upon the WaveNet architecture and recurrent neural networks are nowadays used in human speech synthesis and other various tasks such as "black-box" modeling systems for acoustic signals alteration (modulation effects, non-linear distortion units, etc.). This academic work provides a brief introduction to the neural network terminology and common practice, elaborates on several types of neural network types, the main focus on DeepMind's WaveNet. Furthermore describes and compares results of experimental implementation of WaveNet and other types of neural network in audio signal "black-box" modeling tasks.
Keywords:
black-box; dopředné neuronové sítě; hluboké učení; modelování; modulační efekty; nelineární zkreslení; neuronové sítě; rekurentní neuronové sítě; WaveNet; black-box; deep learning; feedforward neural networks; modeling; modulation effects; neural networks; non-linear distortion; recurrent neural networks; WaveNet
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/197100