Název:
Odezírání ze rtů pomocí hlubokých neuronových sítí
Překlad názvu:
Convolutional Networks for Lip Reading
Autoři:
Kadleček, Josef ; Kišš, Martin (oponent) ; Hradiš, Michal (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2019
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Tato práce se zabývá současnými metodami pro přepis řeči na text a odezírání ze rtů za pomoci neuronových sítí. Následně se zabývá podobností architektur neuronových sítí operujících nad zvukem a videem při rozpoznávání řeči a porovnává dostupné audiovizuální datové sady. Výsledkem práce je sada experimentů porovnávající různé zásahy do modelu a jejich dopad na výsledky. Dále je součástí implementace systému pro přepis řeči (CER: 12.6 %) a pro odezírání ze rtů (CER: 57,7 %). Architektury obou systémů jsou založeny na extrakci příznaků pomocí konvolučních vrstev. Za nimi následují rekurentní vrstvy LSTM, další řada konvolučních vrstev a hodnotící funkce CTC.
This thesis deals with current methods for automatic speech recognition and lip reading via neural networks. Furthermore it deals with similarities in the architectures of neural networks for audio and visual data and available datasets in the field of audiovisual automatic speech recognition. The main contribution of this thesis is set of experiments comparing different changes in neural network architecture and its impact on results. The thesis includes an implementation of a system for automatic speech recognition from audio (CER: 12.6 %) and visual (CER: 57,7 %) data. The architectures of both systems are based on features extraction via convolutional networks followed by recurrent layers LSTM, another layer of convolutions and loss function CTC.
Klíčová slova:
CTC; Enkodér-Dekodér; konvoluce; neuronové sítě; Odezírání ze rtů; počítačové vidění; Python.; PyTorch; přepis řeči; rekurentní neuronové sítě; sekvence na sekvenci; computer vision; convolution; CTC; Encoder-Decoder; Lip reading; neural networks; Python.; PyTorch; recurrent neural network; sequence to sequence; speech recognition
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/180194