Název:
Rozpoznání hranic jízdního pruhu v záběrech palubní kamery
Překlad názvu:
Recognition of Driving Lane Borders in Video from On-Board Camera
Autoři:
Fridrich, David ; Kohút, Jan (oponent) ; Herout, Adam (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2022
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Tato práce se zabývá detekcí jizdních pruhů. Konkrétně vlastního generátoru syntetických dat, jeho využití při trénování neuronových sítí, testování výsledků na konvoluční neuronové síti (CNN) modelu UNet a možnosti rozšíření tohoto modelu na SALMNet model (Structure-Aware Lane Marking Detection Network) pomocí přidání SGCA modulu (Semantic-Guided Channel Attention) a pyramidového modulu PDC (Pyramid deformable convolution). Výsledky trénování syntetických dat ukazují že síť umí rozpoznávat silniční pruhy velmi dobře, s přesností kolem 95\,\% (na jednodušších obrázcích dosahuje i 99\,\%). Nad reálným datasetem se výsledky lišily pro jednotlivé datasety, TuSimple dosahoval větší přesnosti kvůli menší obtížnosti obrázků, a sice kolem 62\,\%. Datová sada CuLane dosahovala pouze kolem 37\,\% velmi nestabilně.
This paper talks about lane detection. Specifically custom generator of synthetic images, usage during training of neural networks, testing on convolutional neural network (CNN) UNet model and possibilities of extension of this model to SALMnet (Structure-Aware Lane Marking Detection Network) via addding SGCA module (semantic-guided channel attention) and PDC module (pyramid deformable convolution). Training results from synthetic datasets show very accurate results, reaching around 95\,\% in accuracy (even 99\,\% for easier images). Trainings with real datasets show lower accuracy, depending on the difficulty of the dataset itself. TuSimple has easier and clearer images and reaches about 62\,\%. CuLane is much more complex and results show accuracy around 37\,\%.
Klíčová slova:
generátor; neuronová síť; počítačové učení; rozpoznávání jízdních pruhů; UNet; computer learning; generator; lane detection; neural network; synthetic dataset; UNet
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/207276