Original title:
Diagnostika plazmatu generovaného ve vybraných konfiguracích elektrického výboje v kapalném prostředí
Translated title:
Plasma diagnostics of electric discharges generated in selected configurations in liquids
Authors:
Vašíček, Michal ; Bartlová, Milada (referee) ; Kozáková, Zdenka (advisor) Document type: Master’s theses
Year:
2014
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta chemická Abstract:
[cze][eng]
Diplomová práce je zaměřena na srovnání stejnosměrného a vysokofrekvenčního (15-80 kHz) elektrického výboje generujícího nízkoteplotní plazma ve vodném roztoku chloridu sodného. V první části se především soustředí na rozbor volt-ampérových a Lissajousových křivek, které popisují jednotlivé fáze výboje: elektrolýzu, generaci bublin a samotné zapálení a hoření plazmatického výboje na štěrbině v dielektrické přepážce. Studuje také vliv frekvence, konduktivity elektrolytu, tloušťky diafragmy (či délky u kapiláry) a průměru štěrbiny na vlastní zapálení výboje, respektive na generaci bublin. Měření byla realizována v polykarbonátovém reaktoru o objemu 110 ml rozděleného polyacetátovou přepážkou na dvě stejné části, z nichž každá obsahovala nerezovou planární elektrodu. Na přepážce byly instalovány keramické disky Shapal-M o různých průměrech štěrbiny 0,3-0,9 mm a tloušťkách 0,3-1,5 mm. Počáteční konduktivita chloridu sodného byla zvolena v rozmezí 100-900 S/cm. Druhá část práce porovnává vliv stejnosměrného a vysokofrekvenčního napěťového zdroje na fyzikální vlastnosti roztoku (konduktivita, pH, teplota) a tvorbu peroxidu vodíku. V reaktoru o objemu 4 l s mícháním byla nainstalována keramická diafragma s tloušťkou 0,6 mm a dírkou o průměru 0,6 mm, která dělí reaktor na dvě části, z nichž každá obsahuje platinovou elektrodu. Měření probíhalo vždy za konstantního výkonu 45 W po dobu 40 minut na každém zdroji napětí. Peroxid vodíku byl vysrážen titanovým činidlem za tvorby žlutého komplexu, který byl spektrometricky stanoven. Vynesením závislosti výkonu vysokofrekvenčního výboje na frekvenci dostáváme exponenciální pokles frekvence se zvyšujícím se výkonem. Pro silnější přepážky je potřebné vyšší zápalné napětí pro stejnosměrný i vysokofrekvenční výboj. Pro větší průměry štěrbiny se musí nastavit nižší zápalné napětí, ale vyšší výkon pro oba režimy výboje.Zápalné napětí klesá s rostoucí konduktivitou v obou režimech díky tomu, že roztok s vyšší konduktivitou obsahuje více nosičů náboje, a proto stačí nižší napětí k zapálení výboje. Zatímco frekvence a výkon stejnosměrného výboje roste, výkon vysokofrekvenčního výboje s rostoucí konduktivitou klesá. Konduktivita i teplota roztoku elektrolytu se zvyšuje s rostoucí počáteční konduktivitou. Při vysokofrekvenčním a stejnosměrném výboji u anody je pozorován pokles pH do kyselé oblasti z důvodu tvorby reaktivních částic a elektrolýzy (u DC výboje), přičemž u katody je roztok alkalický. Koncentrace peroxidu vodíku lineárně roste během vysokofrekvenčního i stejnosměrného výboje v anodové části a je závislá na počáteční koncentraci elektrolytu.
My diploma thesis is focused on a comparison of direct-current and high frequency (15-80 kHz) electric discharge, which generates non-thermal plasma in water solution of sodium chloride. Mainly current-voltage and Lissajous charts are discussed in the first part of this thesis. These charts describe different discharge phases: electrolysis, bubble formation, discharge breakdown and discharge regular operation in a pin-hole of a dielectric barrier. Influence of frequency, electrolyte conductivity, thickness of the diaphragm (or length of the capillary) and pin-hole diameter on discharge breakdown and bubble generation was studied, too. Measurements were realized in a polycarbonate reactor with total volume of 110 ml, which was divided by a changeable polyacetal insulating wall. This wall divided the reactor into two approximately equal spaces with one stainless steel planar electrode in each part. The Shapal-MTM ceramic discs (thickness of 0.3–1.5 mm and diameter of the central pin-hole of 0.3-0.9 mm) were mounted in the centre of the insulating wall. Initial conductivity of sodium chloride solution was chosen within the interval of 100900 S/cm. The second part of my thesis compares an influence of the direct-current (DC) and high frequency (HF) power sources on physical solution properties (conductivity, pH and temperature) and generation of hydrogen peroxide. A plasma reactor with total volume of 4 l and with mixing set up was divided into two equal spaces with one planar platinum electrode in each part. Diaphragm with thickness of 0.6 mm and pin-hole diameter of 0.6 mm was installed in the middle of the separating wall. Experiment was held at discharge operation of 45 W for 40 minutes with both power sources. Detection of hydrogen peroxide was realised by using a titanium reagent forming a yellow complex, which was analysed by absorption spectroscopy. If HF discharge power is plotted as a function of applied frequency, exponential decrease of frequency with increasing power can be observed. Higher breakdown voltage is necessary for thicker dielectric barriers, on the other hand for bigger diameter of the pin-hole lower breakdown voltage and higher power is needed in DC as well as in HF regime. Breakdown voltage is decreased by the increasing conductivity in both regimes; due to more charge carriers in the higher conductivity lower breakdown voltage is needed. However frequency in HF regime and DC discharge power increases. HF discharge power is decreased by the increasing conductivity. Solution conductivity and temperature are increased by initial conductivity value in both discharge regimes. Solution pH drops to acidic conditions when HF or DC positive regime is applied due to the generation of reactive species and electrolysis (in DC regime). However solution becomes alkaline when DC negative regime is applied. Concentration of hydrogen peroxide is produced linearly when HF or DC negative regime is applied and it depends on initial solution conductivity.
Keywords:
breakdown voltage; bubble formation; conductivity; current-voltage and Lissajouse’s charts; diaphragm and capillary configuration; Direct current and high frequency discharge; discharge in electrolyte; electrical characteristics; electrolysis; hydrogen peroxide; pH; pin-hole discharge; sodium chloride; temperature; UV-VIS spectroscopy.; chlorid sodný; elektrické charakteristiky; elektrolýza; generace bublin; kapilární a diafragmová konfigurace; konduktivita; peroxid vodíku; pH; Stejnosměrný a vysokofrekvenční výboj; teplota; UV-VIS spektroskopie.; volt-ampérová a Lissajousova křivka; výboj na štěrbině; výboj v elektrolytu; zapálení výboje; zápalné napětí
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/31095