Název:
Rozpoznávání historických textů pomocí hlubokých neuronových sítí
Překlad názvu:
Convolutional Networks for Historic Text Recognition
Autoři:
Vešelíny, Peter ; Kolář, Martin (oponent) ; Kišš, Martin (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2019
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Táto práca sa zaoberá rozpoznávaním riadkov z historických textov. Historické texty pochádzajú z obdobia od 17. až 19 storočia a sú napísané pomocou fraktúry. Pri rozpoznávaní písma sa používa architektúra neurónovej siete zvaná sequence-to-sequence . Táto architektúra vychádza z modelu kodér-dekodér a používa mechanizmus attention . V rámci práce bola z textov, pochádzajúcich z archívu Deutsches Textarchiv , vytvorená dátová sada. Tento archív obsahuje 3 897 rôznych nemeckých diel, ku ktorým sú dostupné snímky strán a ich prepisy. Vytvorená dátová sada sa následne používa pri trénovaní a experimentovaní s neurónovou sieťou. V rámci experimentov sú skúmané rôzne modely konvolučných sietí, vplyv hyperparametrov siete a účinok pozičného kódovania na výsledky rozpoznávania. Výsledný model dokáže rozpoznať znaky s presnosťou 99,63 %. Prínosom tejto práce je spomínaná dátová sada a neurónová sieť, ktorá sa môže použivať pri rozpoznávaní historických dokumentov.
This thesis deals with text line recognition of historical documents. Historical texts dating back to the 17th - 19th centuries are written in fraktur typeface. The character recognition problem is solved using neural network architecture called sequence-to-sequence . This architecture is based on encoder-decoder model and contains attention mechanism. In this thesis a dataset, from texts originated from German archiv called Deutsches Textarchiv , was created. This archive contains 3 897 different German books that have available transcripts and corresponding images of pages. The created dataset was used to train and experiment with the proposed neural network. During the experiments, several convolutional models, hyperparameters and the effects of positional embedding were investigated. The final tool can recognize characters with accuracy 99,63 %. The contribution of this work is the~mentioned dataset and neural network, which can be used to recognize historical documents.
Klíčová slova:
attention; CNN; dekodér; historický text; kodér; konvolučná neurónová sieť; neurónová sieť; OCR; rekurentná neurónová sieť; RNN; rozpoznávanie textu; seq2seq; attention; CNN; convolutional neural network; decoder; encoder; historical text; neural network; OCR; recurrent neural network; RNN; seq2seq; text recognition
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/180582