Original title:
Třídy modulů motivované algebraickou geometrií
Translated title:
Classes of modules arising in algebraic geometry
Authors:
Slávik, Alexander ; Trlifaj, Jan (advisor) Document type: Rigorous theses
Year:
2024
Language:
eng Abstract:
[eng][cze] This thesis summarises the author's results in representation theory of rings and schemes, obtained with several collaborators. First, we show that for a quasicompact semiseparated scheme X, the derived category of very flat quasicoherent sheaves is equivalent to the derived category of flat quasicoherent sheaves, and if X is affine, this is further equivalent to the homotopy category of projectives. Next, we prove that if R is a commutative Noetherian ring, then every countably generated flat module is quite flat, i.e., a direct summand of a transfinite extension of localizations of R in countable multiplicative subsets. Further, we investigate the relations between the geometric and categorical purity in categories of sheaves; we give a characterization of indecomposable geometric pure-injectives in both the quasicoherent and non-quasicoherent case. In partic- ular, we describe the Ziegler spectrum and its geometric part for the category of quasicoherent sheaves on the projective line over a field. The final result is the equivalence of the following statements for a quasicompact quasiseparated scheme X: (1) the category QCoh(X) of all quasicoherent sheaves on X has a flat generator; (2) for every injective object E of QCoh(X), the internal Hom functor into E is exact; (3) for some injective...Tato práce shrnuje autorovy výsledky v teorii reprezentací okruhů a schémat, získané s několika spolupracovníky. Nejprve pro kvazikompaktní semise- parované schéma X dokazujeme, že derivovaná kategorie velmi plochých kvaziko- herentních svazků je ekvivalentní derivované kategorii plochých kvazikoherentních svazků a pokud je X afinní, je toto dále ekvivalentní homotopické kategorii pro- jektivních modulů. Dále ukazujeme, že nad komutativním Noetherovským okru- hem R je každý spočetně generovaný plochý modul je celkem plochý, tj. direktní sčítanec transfinitní extenze lokalizací R ve spočetných multiplikativních množi- nách. Posléze zkoumáme vztah geometrické a kategoriální čistoty v kategoriích svazků; charakterizujeme nerozložitelné geometricky čistě-injektivní svazky v ka- tegoriích kvazikoherentních i všech svazků. Zcela popisujeme Zieglerovo spektrum i jeho geometrickou část pro kategorii kvazikoherentních svazků na projektivní přímce nad tělesem. Posledním výsledkem je ekvivalence následujících tvrzení pro kvazikompaktní kvaziseparované schéma X: (1) kategorie QCoh(X) všech kvazi- koherentních svazků na X má plochý generátor; (2) pro každý injektivní objekt E ∈ QCoh(X) je interní Hom funktor do E je exaktní; (3) pro nějaký injektivní kogenerátor E ∈ QCoh(X) je interní Hom funktor do E je...
Keywords:
flat module; quasicoherent sheaf; Quillen equivalence; transfinite extension; Ziegler spectrum; kvazikoherentní svazek; plochý modul; Quillenovská ekvivalence; transfinitní extenze; Zieglerovo spektrum
Institution: Charles University Faculties (theses)
(web)
Document availability information: Available in the Charles University Digital Repository. Original record: http://hdl.handle.net/20.500.11956/187500