Název:
Rooting algebraic vertices of convergent sequences
Autoři:
Hartman, David ; Hons, T. ; Nešetřil, J. Typ dokumentu: Příspěvky z konference Konference/Akce: EUROCOMB 2023: European Conference on Combinatorics, Graph Theory and Applications /12./, Prague (CZ), 20230828
Rok:
2023
Jazyk:
eng
Abstrakt: Structural convergence is a framework for convergence of graphs by Nešetřil and Ossona de Mendez that unifies the dense (left) graph convergence and Benjamini-Schramm convergence. They posed a problem asking whether for a given sequence of graphs (Gn) converging to a limit L and a vertex r of L it is possible to find a sequence of vertices (rn) such that L rooted at r is the limit of the graphs Gn rooted at rn. A counterexample was found by Christofides and Král’, but they showed that the statement holds for almost all vertices r of L. We offer another perspective to the original problem by considering the size of definable sets to which the root r belongs. We prove that if r is an algebraic vertex (i.e. belongs to a finite definable set), the sequence of roots (rn) always exists.
Klíčová slova:
algebraic vertices; convergent sequences; rooting Zdrojový dokument: EUROCOMB’23. Proceedings of the 12th European Conference on Combinatorics, Graph Theory and Applications Poznámka: Související webová stránka: https://journals.phil.muni.cz/eurocomb/article/view/35609/31523
Instituce: Ústav informatiky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: https://hdl.handle.net/11104/0344128