Original title:
Automaticka diagnostika 12svodoveho EKG pomoci hlubokeho uceni
Translated title:
Automatic diagnosis of the 12-lead ECG using deep learning
Authors:
Blaude, Ondřej ; Smital, Lukáš (referee) ; Provazník, Valentine (advisor) Document type: Master’s theses
Year:
2023
Language:
cze Publisher:
Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií Abstract:
[cze][eng]
Tato diplomová práce má za cíl prozkoumat problematiku automatické diagnostiky EKG, a to na dvanáctisvodových záznamech. V kapitole první je krátce popsán úvod k srdci a měření jeho elektrické aktivity, navíc jsou zde krátce popsány abnormality, které budou v práci klasifikovány. Ve druhé kapitole je popsáno, jak bylo EKG diagnostikováno dříve, tedy klasickými metodami, které předcházely hlubokému učení. Zde jsou i zmíněny některé nedostatky, které tyto metody mají právě oproti hlubokému učení. Část třetí již věnuje pozornost hlubokému učení samotnému, jeho přínosu a výhodám ve srovnání s metodami klasickými. Popsány jsou zde i konvoluční neuronové sítě a jejich jednotlivé bloky, později je věnována pozornost i vybraným architekturám, které byly v některých studiích použity. Kapitola čtvrtá se již zaměřuje na praktickou část, v níž jsou podrobněji popsána použitá data z databáze PhysioNet, navržený algoritmus a jeho realizace. V páté kapitole jsou výsledky diskutovány a srovnány výsledky dostupných publikací se související problematikou.
The aim of this diploma thesis is to investigate the problematics of automatic ECG diagnostics, namely on twelve-lead recordings. In the first chapter the heart and its electrical activity measurement is described shortly. In addition to that, the abnormalities which are going to be classified in this thesis are also briefly described. In the second chapter, it is described how the ECG was diagnosed earlier, by classical methods that preceded deep learning. Some of the shortcomings that the classical methods have compared to deep learning are also described here. The third part already pays attention to deep learning itself, and its contribution and advantages compared to classical methods. Convolutional neural networks and their individual blocks are also described here, later attention is paid to selected architectures that were used in some studies. The fourth chapter already focuses on the practical part, in which the data used from the PhysioNet database, the proposed algorithm and its implementation are described in more detail. In the fifth chapter the results are discussed and compared to the corresponding publications.
Keywords:
1D convolutional neural network; artificial intelligence; classification; CNN; deep learning; diagnostics; ECG; F1 score; machine learning; Physionet database; residual block; signal downsampling; standard twelve-lead ECG; 1D konvoluční neuronová síť; CNN; diagnostika; EKG; F1 skóre; hluboké učení; klasifikace; Physionet databáze; podvzorkování signálů; reziduální blok; standardní dvanáctisvodové EKG; strojové učení; umělá inteligence
Institution: Brno University of Technology
(web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library. Original record: http://hdl.handle.net/11012/210211