Název:
Spherical basis function approximation with particular trend functions
Autoři:
Segeth, Karel Typ dokumentu: Příspěvky z konference Konference/Akce: Programs and Algorithms of Numerical Mathematics /21./, Jablonec nad Nisou (CZ), 20220619
Rok:
2023
Jazyk:
eng
Abstrakt: The paper is concerned with the measurement of scalar physical quantities at nodes on the $(d-1)$-dimensional unit sphere surface in the hbox{$d$-dimensional} Euclidean space and the spherical RBF interpolation of the data obtained. In particular, we consider $d=3$. We employ an inverse multiquadric as the radial basis function and the corresponding trend is a polynomial of degree 2 defined in Cartesian coordinates. We prove the existence of the interpolation formula of the type considered. The formula can be useful in the interpretation of many physical measurements. We show an example concerned with the measurement of anisotropy of magnetic susceptibility having extensive applications in geosciences and present numerical difficulties connected with the high condition number of the matrix of the system defining the interpolation.
Klíčová slova:
inverse multiquadric; spherical interpolation; spherical radial basis function Zdrojový dokument: Programs and Algorithms of Numerical Mathematics 21, ISBN 978-80-85823-73-8 Poznámka: Související webová stránka: http://dx.doi.org/10.21136/panm.2022.20
Instituce: Matematický ústav AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: https://hdl.handle.net/11104/0342395