Original title:
Pokročilé momentové metody pro analýzu obrazu
Translated title:
Advanced Moment-Based Methods for Image Analysis
Authors:
Höschl, Cyril ; Flusser, Jan (advisor) ; Papakostas, George (referee) ; Jiřík, Radovan (referee) Document type: Doctoral theses
Year:
2018
Language:
eng Abstract:
[eng][cze] The Thesis consists of an introduction and four papers that contribute to the research of image moments and moment invariants. The first two papers focus on rectangular decomposition algorithms that rapidly speed up the moment calculations. The other two papers present a design of new moment invariants. We present a comparative study of cutting edge methods for the decomposition of 2D binary images, including original implementations of all the methods. For 3D binary images, finding the optimal decomposition is an NP-complete problem, hence a polynomial-time heuristic needs to be developed. We propose a sub-optimal algorithm that outperforms other state of the art approximations. Additionally, we propose a new form of blur invariants that are derived by means of projection operators in a Fourier domain, which improves mainly the discrimination power of the features. Furthermore, we propose new moment-based features that are tolerant to additive Gaussian image noise and we show by extensive image retrieval experiments that the proposed features are robust and outperform other commonly used methods.Tato disertace rozvíjí pokročilé metody analýzy obrazu založené na obrazových momentech. Zaměřujeme se především na návrh rychlých algoritmů pro počítání momentů v 2D i 3D a vytvoření nových příznaků, které jsou tolerantní ke Gaussovskému rozmazání, resp. zašumění obrazu. Práce se skládá z úvodu do problematiky a čtyř článků. První článek poskytuje přehledovou studii o metodách obdélníkové dekompozice binárních obrázků v 2D; rozklady mj. urychlují počítání momentů. Součástí studie jsou i implemetnace algoritmů vč. optimálního, který existuje v 2D v polynomiální složitosti a je prakticky dosažitelný. Druhý článek se soustředí na dekompozici 3D binárních objektů do kvádrů. Na rozdíl od 2D je v 3D otázka optimálního rozkladu NP-úplný problém a není známo, že by existoval efektivní způsob jeho řešení. V článku navrhujeme nový sub-optimální algoritmus, který pracuje v polynomiálním čase a na experimentální databázi ukazujeme, že dává statisticky významně lepší výsledky, než nejlepší známé heuristiky. Další dva články se soustřeďují na příznaky invariantní ke Gaussovskému rozmazání a zašumění obrazu. Třetí článek představuje invarianty založené na projekčních operátorech ve Fourierově doméně, což zvyšuje především jejich rozlišovací schopnost. Poslední článek představuje robustní příznaky histogramu obrázku....
Keywords:
content based image retrieval; image moments; moment invariants; noisy image; rectangular decomposition; momentové invarianty; obrazové momenty; rozklad na obdélníky; vyhledávání obrazu podle obsahu; zašuměný obraz
Institution: Charles University Faculties (theses)
(web)
Document availability information: Available in the Charles University Digital Repository. Original record: http://hdl.handle.net/20.500.11956/95348