Název: Nearly All Reals Can Be Sorted with Linear Time Complexity
Autoři: Jiřina, Marcel
Typ dokumentu: Výzkumné zprávy
Rok: 2021
Jazyk: eng
Edice: Technical Report, svazek: V-1285
Abstrakt: We propose a variant of the counting sort modified for sorting reals in a linear time. It is assumed that the sorting key and pointers to the items being sorted are moved and individual items remain at the same place in the memory (in place sorting). In this case, the space complexity of the new variant of the algorithm is the same as the complexity of the quicksort. We also quantify the practical limits for possible sorting reals in a linear time. This possibility is assured under additional assumptions on the distribution of the sorting key, mainly the independence and identity of the distribution. Here we give a more general criteria easily applicable in practice. We also show that the algorithm is applicable for data that do not fulfill criteria for linear time complexity but even that the computation is faster than the system quicksort. A new, faster version of the algorithm is attached.
Klíčová slova: algorithm; linear complexity; real sorting key; sorting; time complexity
Číslo projektu: LM2015068 (CEP)
Poskytovatel projektu: GA MŠk

Instituce: Ústav informatiky AV ČR (web)
Informace o dostupnosti dokumentu: Dokument je dostupný v repozitáři Akademie věd.
Původní záznam: http://hdl.handle.net/11104/0321594

Trvalý odkaz NUŠL: http://www.nusl.cz/ntk/nusl-449084


Záznam je zařazen do těchto sbírek:
Věda a výzkum > AV ČR > Ústav informatiky
Zprávy > Výzkumné zprávy
 Záznam vytvořen dne 2021-08-22, naposledy upraven 2023-12-06.


Není přiložen dokument
  • Exportovat ve formátu DC, NUŠL, RIS
  • Sdílet