Original title: Deep Convolutional Networks For Oct Image Classification
Authors: Hesko, Branislav
Document type: Papers
Language: eng
Publisher: Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních technologií
Abstract: In this work, OCT (optical coherence tomography) images are classified according to the present pathology into four distinct categories. Three different neural network models are used to classify images, each model is recent and we are achieving exceptional results on the testing dataset, which was unknown to the network during the training. Accuracy on the testing set is higher than 98% and only a few of images are classified into the wrong category. This makes our approach perspective for future automatic use. To further improve results, all three models are using transfer learning.
Keywords: classification; deep learning; OCT; retina
Host item entry: Proceedings of the 25st Conference STUDENT EEICT 2019, ISBN 978-80-214-5735-5

Institution: Brno University of Technology (web)
Document availability information: Fulltext is available in the Brno University of Technology Digital Library.
Original record: http://hdl.handle.net/11012/186712

Permalink: http://www.nusl.cz/ntk/nusl-414614


The record appears in these collections:
Universities and colleges > Public universities > Brno University of Technology
Conference materials > Papers
 Record created 2020-07-11, last modified 2021-08-22


No fulltext
  • Export as DC, NUŠL, RIS
  • Share