Original title:
Hodnocení zdravotního stavu lesních porostů v České republice pomocí satelitních dat Sentinel-2
Translated title:
Forest health assessment in Czech Republic using Sentinel-2 satellite data
Authors:
Lukeš, Petr ; Strejček, R. ; Křístek, Š. ; Mlčoušek, M. Document type: Methods
Year:
2018
Language:
cze Abstract:
[cze][eng] Předkládaná metodika má za cíl navrhnout komplexní systém celoplošného hodnocení zdravotního stavu lesních porostů České republiky na základě analýzy satelitních dat Sentinel2. Metodika řeší celý proces od zpracování zdrojových satelitních dat pomocí zcela nového přístupu založeného na využití všech dostupných satelitních pozorování a jejich zpracování do formy bezoblačných mozaik České republiky za využití přístupu analýzy velkých dat. V\nnásledném kroku jsou produkty odvozené z těchto bezoblačných mozaik (vegetační indexy a jiné analýzy obrazu) porovnány s rozsáhlou databází pozemního šetření zdravotního stavu lesních porostů (hodnoty indexu listové plochy vzorkované v rámci vývoje metodiky - dále LAI, databáze defoliací porostů ICPForests, hyperspektrální letecká data pro vybrané zájmové území, globální databáze detekce těžby). Pro produkty s nejlepším vztahem k pozemním hodnotám indexu listové plochy je vyvinut predikční statistický model zisku hodnot LAI ze satelitních dat. Zdravotní stav porostů je hodnocen na základě sledování meziroční změny hodnot LAI pro bezoblačné mozaiky generované v maximu vegetační fáze vegetace, kde jsou jednotlivé pixely zařazeny do čtyř tříd zdravotního stavu dle míry růstu či poklesu LAI ve sledovaném období. Finální hodnocení zdravotního stavu je aplikováno na úrovni katastrálních území, kde je každé katastrální území zařazeno do čtyř tříd zdravotního stavu na základě procentického zastoupení porostů nejnižší třídy zdravotního stavu (výrazný pokles LAI) k celkové lesnatosti porostů do 80 let věku.This methodology aims to design a comprehensive system of nationwide assessment of the state of health of the Czech Republic based on Sentinel-2 satellite data analysis. The methodology addresses the entire process from the pre-processing of source satellite data using a novel approaches based on analysis of all-available satellite observations and their processing in the form of cloud-free mosaics of the Czech Republic using big data approach. In the next step, the products derived from cloud-free mosaics (vegetation indexes and other image analysis) are compared against extensive database of ground survey of forest health status (values of the leaf area index sampled as part of the development of the methodology - further denoted as LAI, database of tree defoliation ICPForests, airborne hyperspectral data acquired for selected study area, global forest losses database). For products with the best relationship to in-situ data, a predictive statistical model to yield LAI from satellite observations is developed. Forest health status is evaluated on the basis of yearly changes of the LAI values for cloud-free mosaics generated in the vegetation maximum. Individual pixels are classified into four health classes according to LAI growth rate or decrease in the observed period. The final assessment of the state of health is applied at the cadastral level, where each cadastral area is classified into four health classes based on the fraction of the lowest health status stands with significant LAI decrease to the total forest cover for stands up to 80 years of age
Keywords:
forests; health status; leaf area index; monitoring; satellite data; Sentinel-2 Project no.: GJ17-05608Y (CEP) Funding provider: GA ČR Note: Související webová stránka: http://www.uhul.cz/kdo-jsme/aktuality/867-hodnoceni-zdravotniho-stavu-lesnich-porostu-v-ceske-republice-pomoci-satelitnich-dat-sentinel-2
Institution: Global Change Research Institute AS ČR
(web)
Document availability information: Fulltext is available in the digital repository of the Academy of Sciences. Original record: http://hdl.handle.net/11104/0291991