Název:
Posilované učení pro hraní hry Starcraft
Překlad názvu:
Reinforcement Learning for Starcraft Game Playing
Autoři:
Chábek, Lukáš ; Fajčík, Martin (oponent) ; Smrž, Pavel (vedoucí práce) Typ dokumentu: Bakalářské práce
Rok:
2018
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Práce se zabývá metodami strojového učení aplikovanými pro hraní strategických her v realném čase. V práci se zabývám metodou strojového učení Q-learning založenou na zpětnovazebním učení. Praktická část práce je implementování agenta pro hraní hry Starcraft II. Mnou navržené řešení se učí spolupráci 4 jednoduchých sítí, které se nadále učí optimálně provádět jim přístupné akce ve hře. Analýza a vyhodnocení systému jsou provedeny experimentováním a sbíráním statistik z odehraných her.
This work focuses on methods of machine learning for playing real-time strategy games. The thesis applies mainly methods of Q-learning based on reinforcement learning. The practical part of this work is implementing an agent for playing Starcraft II. Mine solution is based on 4 simple networks, that are colaborating together. Each of the network also teaches itself how to process all given actions optimally. Analysis of the system is based on experiments and statistics from played games.
Klíčová slova:
Deep-Q-Learning; PySC2; Q-Learning; RTS; Starcraft II; Strojové učení; Umělá Intelience; Artificial Intelligence; Deep-Q-Learning; Machine Learnig; PySC2; Q-Learning; RTS; Stracraft II
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/85144