Název:
Komprese obrazu pomocí neuronových sítí
Překlad názvu:
Image Compression with Neural Networks
Autoři:
Teuer, Lukáš ; Sochor, Jakub (oponent) ; Hradiš, Michal (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2018
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Tento dokument se zabývá kompresí obrazu za pomoci různých druhů neuronových sítí. Jsou zde probrány vlastnosti použitých druhů neuronových sítí, jako jsou konvoluční a rekurentní neuronové sítě. V dokumentu jsou ukázány a podrobně popsány architektury neuronových sítí, které se dají použit ke kompresi obrazu, a vysvětluje, jakým způsobem pracují. Dále jsou zde provedeny experimenty nad různými strukturami a parametry neuronových sítí za cílem najít nejvhodnější vlastnosti sítě pro kompresi obrazu. Navrhují se zde nové koncepty pro kompresi obrazu pomocí neuronových sítí, které jsou hned otestovány. Na závěr je zde navržena síť skládající se z nejlepších konceptů a částí otestovaných během experimentování.
This document describes image compression using different types of neural networks. Features of neural networks like convolutional and recurrent networks are also discussed here. The document contains detailed description of various neural network architectures and their inner workings. In addition, experiments are carried out on various neural network structures and parameters in order to find the most appropriate properties for image compression. Also, there are proposed new concepts for image compression using neural networks that are also immediately tested. Finally, a network of the best concepts and parts discovered during experimentation is designed.
Klíčová slova:
Komprese obrazu; konvoluční sítě; neuronové sítě; rekurentní sítě; convolutional networks; Image compression; neural networks; recurrent networks
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/84947