Název:
A particular smooth interpolation that generates splines
Autoři:
Segeth, Karel Typ dokumentu: Příspěvky z konference Konference/Akce: Programs and Algorithms of Numerical Mathematics /18./, Janov nad Nisou (CZ), 20160619
Rok:
2017
Jazyk:
eng
Abstrakt: There are two grounds the spline theory stems from -- the algebraic one (where splines are understood as piecewise smooth functions satisfying some continuity conditions) and the variational one (where splines are obtained via minimization of some quadratic functionals with constraints). We use the general variational approach called $it smooth interpolation$ introduced by Talmi and Gilat and show that it covers not only the cubic spline and its 2D and 3D analogues but also the well known tension spline (called also spline with tension). We present the results of a 1D numerical example that characterize some properties of the tension spline.
Klíčová slova:
data interpolation; smooth interpolation; spline interpolation Číslo projektu: GA14-02067S (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: Programs and algorithms of numerical mathematics 18, ISBN 978-80-85823-67-7 Poznámka: Související webová stránka: http://hdl.handle.net/10338.dmlcz/703005
Instituce: Matematický ústav AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: http://hdl.handle.net/11104/0272303