Název:
Mnohorozměrná statistika a aplikace na studium genů
Překlad názvu:
Multidimensional statistics and applications to study genes
Autoři:
Bubelíny, Peter ; Klebanov, Lev (vedoucí práce) ; Jurečková, Jana (oponent) ; Kalina, Jan (oponent) Typ dokumentu: Disertační práce
Rok:
2014
Jazyk:
eng
Abstrakt: [eng][cze] Title: Multidimensional statistics and applications to study genes Author: Mgr. Peter Bubelíny Department: Department of probability and mathematical statistics Supervisor: prof. Lev Klebanov, DrSc., KPMS MFF UK Abstract: Microarray data of gene expressions consist of thousands of genes and just some tens of observations. Moreover, genes are highly correlated between themselves and contain systematic errors. Hence the magnitude of these data does not afford us to estimate their correlation structure. In many statistical problems with microarray data, we have to test some thousands of hypotheses simultaneously. Due to dependence between genes, p-values of these hypotheses are dependent as well. In this work, we compared conve- nient multiple testing procedures reasonable for dependent hypotheses. The common manner to make microarray data more uncorrelated and partially eliminate systematic errors is normalizing them. We proposed some new normalizations and studied how different normalizations influence hypothe- ses testing. Moreover, we compared tests for finding differentially expressed genes or gene sets and identified some interesting properties of some tests such as bias of two-sample Kolmogorov-Smirnov test and interesting behav- ior of Hotelling's test for dependent components of observations. In the end of...Název práce: Mnohorozměrná statistika a aplikace na studium genů Autor: Mgr. Peter Bubelíny Katedra: Katedra pravděpodobnosti a matematické statistiky Vedoucí disertační práce: prof. Lev Klebanov, DrSc., KPMS MFF UK Abstrakt: Microarrayová data genových expresí se skládají z několika tisíců genů a pouze několika desítek pozorování. Navíc, geny jsou mezi sebou silně závislé a data obsahují systematické chyby. Proto nám rozsah těchto dat nedovoluje rozumně odhadnout jejich korelační strukturu. U mnoha stati- stických problémů s mircoarrayovými daty musíme současně testovat tisíce hypotéz. Vzhledem k závislosti mezi geny, p-hodnoty těchto hypotéz jsou taky závislé. V této práci porovnáme běžné procedury mnohonásobného testování, které jsou vhodné pro závislé hypotézy. Běžný způsob, jak udělat microarrayová data méně závislá a částečně odstanit systematické chyby, je normalizovat je. Proto bylo navrhnuto několik nových normalizací a studovali jsme, jak různé normalizace ovlivňují testování hypotéz. Navíc jsme porov- nali testy pro nalezení odlišně expresovaných genů nebo genových množin a nalezli několik zajímavých vlastností testů jako například strannost dvoj- výběrového Kolmogorov-Smirnovova testu a...
Klíčová slova:
genové exprese; microarray; procedury mnohonásobného testování; gene expressions; microarray; Multiple testing procedures