Název:
Souvislé kompaktifikace
Překlad názvu:
Connected compactifications
Autoři:
Vaváčková, Martina ; Simon, Petr (vedoucí práce) ; Vejnar, Benjamin (oponent) Typ dokumentu: Bakalářské práce
Rok:
2013
Jazyk:
cze
Abstrakt: [cze][eng] Název práce: Souvislé kompaktifikace Autor: Martina Vaváčková Katedra: Katedra teoretické informatiky a matematické logiky Vedoucí bakalářské práce: prof. RNDr. Petr Simon, DrSc., Katedra teoretické informatiky a matematické logiky Abstrakt: Tato práce se věnuje studiu souvislých kompaktifikací vybraných Ticho- novových prostorů. Předmětem zájmu jsou především maximální prvky v relaci částečného uspořádání, definované na množině všech souvislých kompaktifikací daného prostoru. Nejprve charakterizujeme maximální souvislé kompaktifikace prostorů s konečně mnoha komponentami a zmiňujeme některé, zejména zobec- něné uspořádané prostory, které nemají žádnou souvislou kompaktifikaci. Dále se zabýváme souvislými kompaktifikacemi prostoru racionálních čísel. Popisujeme konstrukci kompaktifikace tohoto prostoru analogickou ke konstrukci Čechovy- Stoneovy kompaktifikace a ukazujeme nutnou a postačující podmínku souvislosti a maximality takové kompaktifikace. Klíčová slova: souvislý prostor, kompaktní prostor, konektifikace, kompaktifikaceTitle: Connected compactifications Author: Martina Vaváčková Department: Department of Theoretical Computer Science and Mathematical Logic Supervisor: prof. RNDr. Petr Simon, DrSc., Department of Theoretical Computer Science and Mathematical Logic Abstract: This thesis deals with connected compactifications of specific Tychonoff spaces. In particular, we are interested in the maximal elements with respect to the partial order over the set of all connected compactifications of a space. First we characterize maximal connected compactifications of spaces containing only finitely many components. We mention examples of spaces which have no connected compactification. Further we study connected compactifications of the rational numbers. We give a construction of a compactification analogical to the construction of the Čech-Stone compactification and we show a necessary and sufficient condition for its connectedness and maximality. Keywords: connected space, compact space, connectification, compactification
Klíčová slova:
kompaktifikace; kompaktní prostor; konektifikace; Souvislý prostor; compact space; compactification; Connected space; connectification