Hlavní stránka > Zprávy > Výzkumné zprávy > Comparison of mixture-based classification with the data-dependent pointer model for various types of components
Název:
Comparison of mixture-based classification with the data-dependent pointer model for various types of components
Autoři:
Likhonina, Raissa ; Suzdaleva, Evgenia ; Nagy, Ivan Typ dokumentu: Výzkumné zprávy
Rok:
2016
Jazyk:
eng
Edice: Research Report, svazek: 2355
Abstrakt: The presented report is devoted to the analysis of a data-dependent pointer model, whether it brings some advantages in comparison with a data-independent pointer model at simulation and estimation of components referring to different types of distribution, including categorical, uniform, exponential and state-space components for a dynamic data-dependent model, and normal components for a static data-dependent pointer model.
Klíčová slova:
data-dependent pointer; mixture-based classification; recurisive mixture estimation Číslo projektu: GA15-03564S (CEP) Poskytovatel projektu: GA ČR