Název:
A note on tension spline
Autoři:
Segeth, Karel Typ dokumentu: Příspěvky z konference Konference/Akce: Applications of Mathematics 2015, Prague (CZ), 2015-11-18 / 2015-11-21
Rok:
2015
Jazyk:
eng
Abstrakt: Spline theory is mainly grounded on two approaches: the algebraic one (where splines are understood as piecewise smooth functions) and the variational one (where splines are obtained via minimization of quadratic functionals with constraints). We show that the general variational approach called smooth interpolation introduced by Talmi and Gilat covers not only the cubic spline but also the well known tension spline (called also spline in tension or spline with tension). We present the results of a 1D numerical example that show the advantages and drawbacks of the tension spline.
Klíčová slova:
Fourier transform; smooth interpolation; tension spline Číslo projektu: GA14-02067S (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: Applications of Mathematics 2015, ISBN 978-80-85823-65-3
Instituce: Matematický ústav AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: http://hdl.handle.net/11104/0251971