Original title:
Smooth approximation spaces based on a periodic system
Authors:
Segeth, Karel Document type: Papers Conference/Event: Programs and Algorithms of Numerical Mathematics /17./, Dolní Maxov (CZ), 2014-06-08 / 2014-06-13
Year:
2015
Language:
eng Abstract:
A way of data approximation called smooth was introduced by Talmi and Gilat in 1977. Such an approach employs a (possibly infinite) linear combination of smooth basis functions with coefficients obtained as the unique solution of a minimization problem. While the minimization guarantees the smoothness of the approximant and its derivatives, the constraints represent the interpolating or smoothing conditions at nodes. In the contribution, a special attention is paid to the periodic basis system $exp(-ii kx)$. A 1D numerical example is presented.
Keywords:
cubic spline interpolation; data interpolation; smooth interpolation Project no.: GA14-02067S (CEP) Funding provider: GA ČR Host item entry: Programs and algorithms of numerical mathematics 17. Proceedings of seminar, ISBN 978-80-85823-64-6 Note: Související webová stránka: http://hdl.handle.net/10338.dmlcz/702684
Institution: Institute of Mathematics AS ČR
(web)
Document availability information: Fulltext is available in the digital repository of the Academy of Sciences. Original record: http://hdl.handle.net/11104/0246500