Národní úložiště šedé literatury Nalezeno 7 záznamů.  Hledání trvalo 0.02 vteřin. 
Surfactant-free silver nanofluids as liquid systems with neuromorphic potential
Nikitin, D. ; Biliak, K. ; Lemke, J. ; Protsak, M. ; Pleskunov, P. ; Tosca, M. ; Ali-Ogly, S. ; Červenková, V. ; Adejube, B. ; Bajtošová, L. ; Černochová, Zulfiya ; Prokeš, J. ; Křivka, I. ; Biederman, H. ; Faupel, F. ; Vahl, A. ; Choukourov, A.
Neuromorphic engineering is a rapidly developing branch of science that aims to implement the unique attributes of biological neural networks in artificial devices. Most neuromorphic devices are based on the resistive switching effect, which involves changing the device’s conductivity in response to an external electric field. For instance, percolating nanoparticle (NP) networks produced by gas aggregation cluster sources (GAS) show collective spiking behavior in conductivity reminiscent of brain-like dynamics. Nevertheless, the problem of dynamic spatial reconfiguration in solid-state neuromorphic systems remains unsolved. Herein, novel nanofluids with resistive switching properties are proposed as neuromorphic media. They are produced by depositing silver NPs from GAS into vacuum-compatible liquids (paraffin, silicon oil, and PEG) without the use of surfactants or other chemicals. When the electric field is applied between two electrodes, the migration of NPs toward biased electrode is detected in all liquids. The electrophoretic nature of the NP movement was proved by means of ζ-potential measurements. Such movement led to the self-assembly of NPs in conductive paths connecting the electrodes and, as a result, to resistive switching. The electrical response was strongly dependent on the dielectric constant of the base liquid. The Ag-PEG nanofluid demonstrated the best switching performance reproducible during several tens of current-voltage cycles. The growth of flexible and reconfigurable conductive filaments in nanofluids makes them suitable media for potential realization of 3D neural networks.
Rozvoj inverzních úloh vedení tepla se zaměřením na velmi rychlé procesy v mikroskopických měřítcích
Bellerová, Hana ; Jaroš, Michal (oponent) ; Dohnal, Mirko (oponent) ; Raudenský, Miroslav (vedoucí práce)
Řešením inverzní úlohy je okrajová podmínka v rovnici vedení tepla. Z její znalosti lze určit teplotní pole chlazeného tělesa. V práci jsou zkoumány způsoby, jak zvýšit přesnost výsledků získaných řešením inverzní úlohy založeném na Beckově sekvenčním algoritmu. Pozornost je zaměřena na děje, při kterých se okrajová podmínka mění velmi rychle, a je tak náročnější ji určit. Je ukázáno, že umístění a typ termočlánku hrají v přesnosti výpočtu zásadní úlohu, dále to je frekvence měření a rozlišitelnost přístroje pro záznam dat z termočlánku. Také nastavení parametrů inverzní úlohy je nutno pečlivě uvážit. Poznatky z teoretické části práce jsou využity v experimentální části, v níž je zkoumána chladicí intenzita při ostřiku ocelového vzorku vodou s nanočásticemi Al2O3, TiO2, Fe a uhlíkovými nanovlákny MWNT o třech různých koncentracích. Experimenty byly provedeny pro tři různé ostřikové vzdálenosti (40, 100, 160 mm), tři průtoky (1, 1.5, 2 kg/min) a dva typy trysek (kuželová a jednopaprsková). Z porovnání s vodou je intenzita chlazení nanokapalinami překvapivě nižší a to až o 30% s výjimkou 1 hm.% uhlíkových nanovláken ve vodě dopadajících na horký povrch ze vzdálenosti 100 mm. V tomto případě bylo dosaženo zvýšení až o 174%. Na závěr jsou vyloženy možné důvody pozorovaného chování nanokapalin.
Studium nanomateriálů pro jejich použití v jaderné energetice a výzkumu
Jelínek, Martin ; ČEZ,, Jiří Skalička, (oponent) ; Katovský, Karel (vedoucí práce)
Bakalářská práce poskytuje ucelený přehled vlastností jednotlivých nanomateriálů a shrnuje nejnovější poznatky o pokročilých aplikacích ve všech odvětvích jaderné energetiky od konstrukčních materiálů, přes palivo, palivové pokrytí, moderátor neutronů a chladivo až po pokročilé metody detekce ionizujícího záření a jeho přímé využití pro výrobu elektrické energie. Prostor je věnován také uplatnění v bezpečnostních prvcích a systémech jaderných elektráren. Experimentální část práce se zabývá možností použití uhlíkových nanovláken jako aditiva do chladiva jaderného reaktoru typu VVER kvůli celkovému vylepšení tepelných vlastností chladiva. Dosud málo zkoumaná problematika změny neutronové bilance vlivem interakcí s nanočásticemi byla prakticky ověřována na směsi s parafínem ve dvou různých koncentracích a srovnávána s referenčním vzorkem z čistého parafínu.
Nanokapaliny
Cabúk, Matej ; Kárník, Jan (oponent) ; Fic, Miloslav (vedoucí práce)
Nanomateriály sú fenoménmi dnešnej doby vo vede a technike. Nanokvapaliny sú kvapaliny s originálnymi vlastnosťami. V tejto práci sú prezentované metódy výroby a vplyv nanočastíc na základné termofyzikálne vlastnosti. Zaujímavou časťou je použitie nanokvapalín. Využívajú sa hlavne v systémoch prenosu tepla, ale je možné ich použiť v širokej oblasti. Môžu zvýšiť výkon a účinnosť strojov, šetriť energiu a peniaze ale aj zachraňovať ľudské životy.
Studium nanomateriálů pro jejich použití v jaderné energetice a výzkumu
Jelínek, Martin ; ČEZ,, Jiří Skalička, (oponent) ; Katovský, Karel (vedoucí práce)
Bakalářská práce poskytuje ucelený přehled vlastností jednotlivých nanomateriálů a shrnuje nejnovější poznatky o pokročilých aplikacích ve všech odvětvích jaderné energetiky od konstrukčních materiálů, přes palivo, palivové pokrytí, moderátor neutronů a chladivo až po pokročilé metody detekce ionizujícího záření a jeho přímé využití pro výrobu elektrické energie. Prostor je věnován také uplatnění v bezpečnostních prvcích a systémech jaderných elektráren. Experimentální část práce se zabývá možností použití uhlíkových nanovláken jako aditiva do chladiva jaderného reaktoru typu VVER kvůli celkovému vylepšení tepelných vlastností chladiva. Dosud málo zkoumaná problematika změny neutronové bilance vlivem interakcí s nanočásticemi byla prakticky ověřována na směsi s parafínem ve dvou různých koncentracích a srovnávána s referenčním vzorkem z čistého parafínu.
Nanokapaliny
Cabúk, Matej ; Kárník, Jan (oponent) ; Fic, Miloslav (vedoucí práce)
Nanomateriály sú fenoménmi dnešnej doby vo vede a technike. Nanokvapaliny sú kvapaliny s originálnymi vlastnosťami. V tejto práci sú prezentované metódy výroby a vplyv nanočastíc na základné termofyzikálne vlastnosti. Zaujímavou časťou je použitie nanokvapalín. Využívajú sa hlavne v systémoch prenosu tepla, ale je možné ich použiť v širokej oblasti. Môžu zvýšiť výkon a účinnosť strojov, šetriť energiu a peniaze ale aj zachraňovať ľudské životy.
Rozvoj inverzních úloh vedení tepla se zaměřením na velmi rychlé procesy v mikroskopických měřítcích
Bellerová, Hana ; Jaroš, Michal (oponent) ; Dohnal, Mirko (oponent) ; Raudenský, Miroslav (vedoucí práce)
Řešením inverzní úlohy je okrajová podmínka v rovnici vedení tepla. Z její znalosti lze určit teplotní pole chlazeného tělesa. V práci jsou zkoumány způsoby, jak zvýšit přesnost výsledků získaných řešením inverzní úlohy založeném na Beckově sekvenčním algoritmu. Pozornost je zaměřena na děje, při kterých se okrajová podmínka mění velmi rychle, a je tak náročnější ji určit. Je ukázáno, že umístění a typ termočlánku hrají v přesnosti výpočtu zásadní úlohu, dále to je frekvence měření a rozlišitelnost přístroje pro záznam dat z termočlánku. Také nastavení parametrů inverzní úlohy je nutno pečlivě uvážit. Poznatky z teoretické části práce jsou využity v experimentální části, v níž je zkoumána chladicí intenzita při ostřiku ocelového vzorku vodou s nanočásticemi Al2O3, TiO2, Fe a uhlíkovými nanovlákny MWNT o třech různých koncentracích. Experimenty byly provedeny pro tři různé ostřikové vzdálenosti (40, 100, 160 mm), tři průtoky (1, 1.5, 2 kg/min) a dva typy trysek (kuželová a jednopaprsková). Z porovnání s vodou je intenzita chlazení nanokapalinami překvapivě nižší a to až o 30% s výjimkou 1 hm.% uhlíkových nanovláken ve vodě dopadajících na horký povrch ze vzdálenosti 100 mm. V tomto případě bylo dosaženo zvýšení až o 174%. Na závěr jsou vyloženy možné důvody pozorovaného chování nanokapalin.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.