Název:
Shlukování mikrobiálních kolonií na základě obrazu
Překlad názvu:
Image-Based Clustering of Microbial Colonies
Autoři:
Láncoš, Jan ; Kišš, Martin (oponent) ; Beneš, Karel (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2023
Jazyk:
eng
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [eng][cze]
Laboratorní analýza mikrobiálních kolonií pěstovaných na Petriho miskách je v současné době předmětem intenzivního výzkumu ve snaze o dosažení totální laboratorní automatizace. Jádro tohoto problému spočívá v přesné lokalizaci kolonií při obrazové analýze. Současná řešení nejčastěji využívají strojové učení, které je však obecně závislé na kvalitních datech, kterých je v tomto odvětví k dispozici jen velmi málo. Abych adresoval tento problém, vytvořil jsem víceúčelový generátor syntetických dat. Úspěšně jsem jej aplikoval jak při segmentaci tak při shlukování kolonií. Výsledné segmentační F1 skóre se mi podařilo navýšit z 0,518 na 0,729 a při shlukování jsem s využitím této segmentace dosáhl V-measure skóre 0,830. Prací navržený přístup ke generování syntetických dat nás posouvá o krok blíže k plné laboratorní automatizaci.
In-lab analysis of microbial colonies grown on Petri dishes is on the frontier of efforts for total laboratory automation. The core of this issue lies in precise localization of the colonies during image analysis. The state of the art solutions often employ machine learning models. However, these models tend to be heavily reliant on existence of quality labels which leads to a data scarcity problem. The proposed thesis addresses this issue by creation of a sample generator. The robustness of the proposed solution was corroborated by successfully applying the generator both in our segmentation and colony clustering efforts, significantly raising the F1 segmentation score from 0.518 to 0.729 and achieving a subsequent V-measure clustering score of 0.830. This approach to generating synthetic data brings us one step closer towards total laboratory automation.
Klíčová slova:
agar plate; clustering; convolutional neural network; data augmentation; data generation; genetic algorithm; image analysis; k-means; laboratory automation; machine learning; microbial colonies; petri dish; segmentation; synthetic data; u-net; analýza obrazu; augmentace dat; generace dat; genetický algoritmus; k-means; konvolutní neuronové sítě; laboratorní automatizace; mikrobiální kolonie; Petriho misky s agarem; segmentace; shlukování; strojové učení; syntetická data; u-net
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/213191