Název:
Koevoluční algoritmy a klasifikace
Překlad názvu:
Coevolutionary Algorithms and Classification
Autoři:
Hurta, Martin ; Sekanina, Lukáš (oponent) ; Drahošová, Michaela (vedoucí práce) Typ dokumentu: Diplomové práce
Rok:
2021
Jazyk:
cze
Nakladatel: Vysoké učení technické v Brně. Fakulta informačních technologií
Abstrakt: [cze][eng]
Cílem této práce je automatizovaný návrh programu pro detekci projevů dyskineze z pohybových dat pacientů. K návrhu programu je využito kartézské genetické programování, které bylo z důvodu urychlení procesu návrhu doplněno o koevoluci prediktorů fitness s proměnlivou velikostí, která umožňuje vyhodnocení kvality kandidátních řešení na pouhé části trénovacích dat. Vzniklé řešení dosahuje srovnatelné schopnosti rozlišení mezi třídami (AUC) s existujícím řešením při dosažení v průměru trojnásobného zrychlení procesu návrhu oproti variantě bez prediktorů fitness. Experimenty s metodami křížení prediktorů neukázaly významný rozdíl mezi zvolenými metodami. Zajímavých výsledků však bylo dosaženo při experimentech s celočíselnými datovými typy vhodnými pro implementaci v hardwaru, kdy u datového typu o osmi bitech bez znaménka (uint8_t) bylo dosaženo nejenom srovnatelné schopnosti rozlišení mezi třídami (pro významné projevy dyskineze AUC = 0,93 shodně jako pro existující řešení) a zlepšení rozlišovací schopností u chodících pacientů (AUC = 0,80 oproti AUC = 0,73 u existujícího řešení), ale navíc v průměru téměř devítinásobného zrychlení návrhu oproti variantě bez prediktorů fitness využívající datový typ float.
The aim of this work is to automatically design a program that is able to detect dyskinetic movement features in the measured patient's movement data. The program will be developed using Cartesian genetic programming equipped with coevolution of fitness predictors. This type of coevolution allows to speed up a design performed by Cartesian genetic programming by evaluating a quality of candidate solutions using only a part of training data. Evolved classifier achieves a performance (in terms of AUC) that is comparable with the existing solution while achieving threefold acceleration of the learning process compared to the variant without the fitness predictors, in average. Experiments with crossover methods for fitness predictors haven't shown a significant difference between investigated methods. However, interesting results were obtained while investigating integer data types that are more suitable for implementation in hardware. Using an unsigned eight-bit data type (uint8_t) we've achieved not only comparable classification performance (for significant dyskinesia AUC = 0.93 the same as for the existing solutions), with improved AUC for walking patient's data (AUC = 0.80, while existing solutions AUC = 0.73), but also nine times speedup of the design process compared to the approach without fitness predictors employing the float data type, in average.
Klíčová slova:
dyskineze; evoluční algoritmy; genetické algoritmy; genetické programování; kartézské genetické programování; klasifikace; koevoluční algoritmy; prediktor s proměnlivou velikostí; strojové učení; adaptive fitness predictor; cartesian genetic programming; classification; coevolutionary algorithm; dyskinesia; evolutionary algorithm; genetic algorithm; genetic programming; machine learning
Instituce: Vysoké učení technické v Brně
(web)
Informace o dostupnosti dokumentu:
Plný text je dostupný v Digitální knihovně VUT. Původní záznam: http://hdl.handle.net/11012/200153