Název:
Random response of a dynamic system under polynomial of a white noise
Autoři:
Náprstek, Jiří ; Fischer, Cyril Typ dokumentu: Příspěvky z konference Konference/Akce: International colloquium DYMAMESI 2020, Praha (CZ), 20200303
Rok:
2020
Jazyk:
eng
Abstrakt: Many types of external additive random excitation of dynamic systems admit to be modelled as a combination of powers of a Gaussian noise. Such a type of excitation produces a non-Gaussian response even if the dynamic system is linear and the excitation is additive only. Although the excitation as a whole is non-Gaussian, the problem can be transformed into the form of a linear system with an additive and multiplicative white noise excitation which _nally produces a non-Gaussian response. The general method of transformation, the respective FPK equation, basic stochastic moments of the response, and a demonstrative example are discussed.
Klíčová slova:
Kronecker algebra; non-Gaussian excitation; nonlinear filtering Číslo projektu: GA19-21817S (CEP) Poskytovatel projektu: GA ČR Zdrojový dokument: The International Colloquium Dynymics of machines and mechanical systems with interactions DYMAMESI 2020. Proceedings, ISBN 978-80-87012-73-4
Instituce: Ústav teoretické a aplikované mechaniky AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v příslušném ústavu Akademie věd ČR. Původní záznam: http://hdl.handle.net/11104/0307275