Název:
Crandall-Rabinowitz type bifurcation for non-differentiable perturbations of smooth mappings
Autoři:
Recke, L. ; Väth, Martin ; Kučera, Milan ; Navrátil, J. Typ dokumentu: Příspěvky z konference Konference/Akce: International Conference on Patterns of Dynamics, Berlin (DE), 20160725
Rok:
2017
Jazyk:
eng
Abstrakt: We consider abstract equations of the type ..., where lambda is a bifurcation parameter and tau is a perturbation parameter. We suppose that ... for all lambda and tau, F is smooth and the unperturbed equation ... describes a Crandall-Rabinowitz bifurcation in lambda=0, that is, two half-branches of nontrivial solutions bifurcate from the trivial solution in lambda=0. Concerning G, we suppose only a certain Lipschitz condition; in particular, G is allowed to be non-differentiable. We show that for fixed small ... there exist also two half-branches of nontrivial solutions to the perturbed equation, but they bifurcate from the trivial solution in two bifurcation points, which are different, in general. Moreover, we determine the bifurcation directions of those two half-branches, and we describe, asymptotically as ..., how the bifurcation points depend on tau. Finally, we present applications to boundary value problems for quasilinear elliptic equations and...
Klíčová slova:
formula for the bifurcation direction; Lipschitz bifurcation branch; nonsmooth equation Zdrojový dokument: Patterns of Dynamics, ISBN 978-3-319-64172-0, ISSN 2194-1009 Poznámka: Související webová stránka: https://link.springer.com/chapter/10.1007/978-3-319-64173-7_12
Instituce: Matematický ústav AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný na vyžádání prostřednictvím repozitáře Akademie věd. Původní záznam: http://hdl.handle.net/11104/0281646