Název:
Stochastický model katastrof cusp
Překlad názvu:
Stochastic Catastrophe Model Cusp
Autoři:
Voříšek, Jan ; Vošvrda, Miloslav (vedoucí práce) Typ dokumentu: Rigorózní práce
Rok:
2017
Jazyk:
eng
Abstrakt: [eng][cze] Title: Stochastic Catastrophe Model Cusp Author: Jan Voříšek Department: Department of Probability and Mathematical Statistics Supervisor: Prof. Ing. Miloslav Vošvrda, CSc., Czech Academy of Sciences, Institute of Information Theory and Automation Abstract: The goal of this thesis is to analyze the stochastic cusp model. This task is divided into two main topics. The first of them concentrates on the stationary density of the cusp model and statistical testing of its bimodality, where power and size of the proposed tests are simulated and compared with the dip test of unimodality. The second main topic deals with the transition density of the stochastic cusp model. Comparison of approximate maximum likelihood approach with traditional finite difference and numerical simulations indicates its advantage in terms of speed of estimation. An approximate Fisher information matrix of general stochastic process is derived. An application of the cusp model to the exchange rate with time-varying parameters is estimated, the extension of the cusp model into stochastic bimodality model is proposed, and the measure of probability of intrinsic crash of the cusp model is suggested. Keywords: stochastic cusp model, bimodality testing, transition density ap- proximationNázev práce: Stochastický model katastrof cusp Autor: Jan Voříšek Katedra: Katedra pravděpodobnosti a matematické statistiky MFF UK Vedoucí disertační práce: Prof. Ing. Miloslav Vošvrda, CSc., Ústav teorie informace a automatizace AV ČR Abstrakt: Cílem této práce je analyzovat stochastický model cusp. Práce je rozdělena na dvě hlavní témata, kde první kapitola se zabývá stacionární husto- tou modelu cusp a statistickým testováním její bimodality. Vlastnosti navržených testů jsou prozkoumány v simulační studii a srovnány s dip testem unimodali- ty. Druhá kapitola se zabývá přechodovou hustotou stochastického modelu cusp. Srovnání metody přibližné maximální věrohodnosti s tradičními metodami koneč- ných diferencí a numerické simulace naznačuje její výhodnost v rychlosti odhadu. Je odvozena přibližná Fisherova informační matice obecného stochastického pro- cesu. Na příkladu směnného kurzu je odhadnut model cusp s parametry měnícími se v čase, navrženy rozšíření stochastického modelu cusp na model stochastické bimodality a míra pravděpodobnosti vnitřního krachu modelu cusp. Klíčová slova: stochastický model cusp, testování bimodality, approximace pře- chodové hustoty
Klíčová slova:
approximace přechodové hustoty; stochastický model cusp; testování bimodality; bimodality testing; stochastic cusp model; transition density approximation