Hlavní stránka > Vysokoškolské kvalifikační práce > Disertační práce > Identification and molecular characterization of the putative immunophilins (IMMs) in the oilseed rape pathogens Leptosphaeria maculans, Leptosphaeria biglobosa, and Plasmodiophora brassicae
Název:
Identification and molecular characterization of the putative immunophilins (IMMs) in the oilseed rape pathogens Leptosphaeria maculans, Leptosphaeria biglobosa, and Plasmodiophora brassicae
Překlad názvu:
Identification and molecular characterization of the putative immunophilins (IMMs) in the oilseed rape pathogens Leptosphaeria maculans, Leptosphaeria biglobosa, and Plasmodiophora brassicae
Autoři:
Sandhu, Khushwant Singh ; Ryšánek, Pavel (vedoucí práce) ; Radovan, Radovan (oponent) Typ dokumentu: Disertační práce
Rok:
2016
Jazyk:
cze
Nakladatel: Česká zemědělská univerzita v Praze
Abstrakt: [cze][eng] Oilseed rape is largely infected by several phytopathogens and two most economical important diseases are blackleg caused by fungus species complex Leptosphaeria maculans and L. biglobosa and clubroot caused by protist P. brassicae. The sequenced genomes of these phytopathogens provide opportunity to uncover various aspects related to disease infection, host pathogen interactions, plant disease resistance, and evolution of pathogens. Considering these we focused on one of the most conserved family called immunophilins (IMMs) in these genomes. IMMs are comprised of three structurally unrelated sub-families including cyclophilins (CYPs), FK506-binding proteins (FKBPs), and parvulin-like proteins (PARs). We identified putative members of IMMs in each phytopathogen using bioinformatics approaches. We further characterized the IMMs based on domain architecture, subcellular localization, exon-intron organization, transcriptomic expression patterns, gene ontology terms, conserved motifs presents and evolutionary analyses. IMMs are performing several vital roles in plants, animals and fungi. However, in phytopathogens their roles are not well established except for cyclophilin that implicates in pathogenicity in some phytopathogens. Therefore, we exploited the role of cyclophilin in L. maculans and L. biglobosa using expression profiles and in P. brassicae using Magnaporthe oryzae cyclophilin deletion mutant. Overall, we concluded that the cyclophilin acts as a virulence determinant in our studied phytopathogens. However, delineating the precise role of other IMMs would also be imperative. Taken together, our findings for the first time shed light on the highly conserved IMM family in the oilseed rape pathogens.Oilseed rape is largely infected by several phytopathogens and two most economical important diseases are blackleg caused by fungus species complex Leptosphaeria maculans and L. biglobosa and clubroot caused by protist P. brassicae. The sequenced genomes of these phytopathogens provide opportunity to uncover various aspects related to disease infection, host pathogen interactions, plant disease resistance, and evolution of pathogens. Considering these we focused on one of the most conserved family called immunophilins (IMMs) in these genomes. IMMs are comprised of three structurally unrelated sub-families including cyclophilins (CYPs), FK506-binding proteins (FKBPs), and parvulin-like proteins (PARs). We identified putative members of IMMs in each phytopathogen using bioinformatics approaches. We further characterized the IMMs based on domain architecture, subcellular localization, exon-intron organization, transcriptomic expression patterns, gene ontology terms, conserved motifs presents and evolutionary analyses. IMMs are performing several vital roles in plants, animals and fungi. However, in phytopathogens their roles are not well established except for cyclophilin that implicates in pathogenicity in some phytopathogens. Therefore, we exploited the role of cyclophilin in L. maculans and L. biglobosa using expression profiles and in P. brassicae using Magnaporthe oryzae cyclophilin deletion mutant. Overall, we concluded that the cyclophilin acts as a virulence determinant in our studied phytopathogens. However, delineating the precise role of other IMMs would also be imperative. Taken together, our findings for the first time shed light on the highly conserved IMM family in the oilseed rape pathogens.
Klíčová slova:
Blackleg; Leptosphaeria biglobosa; phytopathogenes