Název:
On the number of stationary patterns in reaction-diffusion systems
Autoři:
Rybář, Vojtěch ; Vejchodský, Tomáš Typ dokumentu: Příspěvky z konference Konference/Akce: Applications of Mathematics 2015, Prague (CZ), 2015-11-18 / 2015-11-21
Rok:
2015
Jazyk:
eng
Abstrakt: We study systems of two nonlinear reaction-diffusion partial differential equations undergoing diffusion driven instability. Such systems may have spatially inhomogeneous stationary solutions called Turing patterns. These solutions are typically non-unique and it is not clear how many of them exists. Since there are no analytical results available, we look for the number of distinct stationary solutions numerically. As a typical example, we investigate the reaction-diffusion systém designed to model coat patterns in leopard and jaguar.
Klíčová slova:
classification of non-unique solutions; diffusion driven instability; Turing patterns Zdrojový dokument: Applications of Mathematics 2015, ISBN 978-80-85823-65-3
Instituce: Matematický ústav AV ČR
(web)
Informace o dostupnosti dokumentu:
Dokument je dostupný v repozitáři Akademie věd. Původní záznam: http://hdl.handle.net/11104/0251970